Spaces:
Runtime error
Runtime error
Duplicate from keras-io/timeseries-anomaly-detection-autoencoders
Browse filesCo-authored-by: Reme Ajayi <[email protected]>
- .gitattributes +27 -0
- README.md +13 -0
- app.py +80 -0
- art_daily_jumpsup.csv +0 -0
- requirements.txt +3 -0
- scaler.json +1 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Timeseries Anomaly Detection
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: keras-io/timeseries-anomaly-detection-autoencoders
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import from_pretrained_keras
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
f = open('scaler.json')
|
9 |
+
scaler = json.load(f)
|
10 |
+
|
11 |
+
TIME_STEPS = 288
|
12 |
+
|
13 |
+
# Generated training sequences for use in the model.
|
14 |
+
def create_sequences(values, time_steps=TIME_STEPS):
|
15 |
+
output = []
|
16 |
+
for i in range(len(values) - time_steps + 1):
|
17 |
+
output.append(values[i : (i + time_steps)])
|
18 |
+
return np.stack(output)
|
19 |
+
|
20 |
+
|
21 |
+
def normalize_data(data):
|
22 |
+
df_test_value = (data - scaler["mean"]) / scaler["std"]
|
23 |
+
return df_test_value
|
24 |
+
|
25 |
+
def plot_test_data(df_test_value):
|
26 |
+
fig, ax = plt.subplots()
|
27 |
+
df_test_value.plot(legend=False, ax=ax)
|
28 |
+
return fig
|
29 |
+
|
30 |
+
def get_anomalies(df_test_value):
|
31 |
+
# Create sequences from test values.
|
32 |
+
x_test = create_sequences(df_test_value.values)
|
33 |
+
model = from_pretrained_keras("keras-io/timeseries-anomaly-detection")
|
34 |
+
|
35 |
+
# Get test MAE loss.
|
36 |
+
x_test_pred = model.predict(x_test)
|
37 |
+
test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
|
38 |
+
test_mae_loss = test_mae_loss.reshape((-1))
|
39 |
+
|
40 |
+
# Detect all the samples which are anomalies.
|
41 |
+
anomalies = test_mae_loss > scaler["threshold"]
|
42 |
+
return anomalies
|
43 |
+
|
44 |
+
def plot_anomalies(df_test_value, data, anomalies):
|
45 |
+
# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
|
46 |
+
anomalous_data_indices = []
|
47 |
+
for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
|
48 |
+
if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
|
49 |
+
anomalous_data_indices.append(data_idx)
|
50 |
+
df_subset = data.iloc[anomalous_data_indices]
|
51 |
+
fig, ax = plt.subplots()
|
52 |
+
data.plot(legend=False, ax=ax)
|
53 |
+
df_subset.plot(legend=False, ax=ax, color="r")
|
54 |
+
return fig
|
55 |
+
|
56 |
+
def master(file):
|
57 |
+
# read file
|
58 |
+
data = pd.read_csv(file, parse_dates=True, index_col="timestamp")
|
59 |
+
df_test_value = normalize_data(data)
|
60 |
+
# plot input test data
|
61 |
+
plot1 = plot_test_data(df_test_value)
|
62 |
+
# predict
|
63 |
+
anomalies = get_anomalies(df_test_value)
|
64 |
+
#plot anomalous data points
|
65 |
+
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
66 |
+
return plot2
|
67 |
+
|
68 |
+
outputs = gr.Plot()
|
69 |
+
|
70 |
+
|
71 |
+
iface = gr.Interface(master,
|
72 |
+
gr.inputs.File(label="csv file"),
|
73 |
+
outputs=outputs,
|
74 |
+
examples=["art_daily_jumpsup.csv"], title="Timeseries Anomaly Detection Using an Autoencoder",
|
75 |
+
description = "Anomaly detection of timeseries data.",
|
76 |
+
article = "Space by: <a href=\"https://www.linkedin.com/in/olohireme-ajayi/\">Reme Ajayi</a> <br> Keras Example by <a href=\"https://github.com/pavithrasv/\"> Pavithra Vijay</a>")
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
iface.launch()
|
art_daily_jumpsup.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
tensorflow
|
scaler.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean": 42.43835333580657, "std": 28.07712228126252, "threshold": 0.1001741920131276}
|