Spaces:
Runtime error
Runtime error
from typing import Union | |
from argparse import ArgumentParser | |
import asyncio | |
import json | |
from os import path | |
import gradio as gr | |
import torch | |
import numpy as np | |
import librosa | |
import edge_tts | |
from config import device | |
import util | |
from infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono | |
) | |
from vc_infer_pipeline import VC | |
# Argument parsing | |
arg_parser = ArgumentParser() | |
arg_parser.add_argument( | |
'--hubert', | |
default='hubert_base.pt', | |
help='path to hubert base model (default: hubert_base.pt)' | |
) | |
arg_parser.add_argument( | |
'--config', | |
default='multi_config.json', | |
help='path to config file (default: multi_config.json)' | |
) | |
arg_parser.add_argument( | |
'--bind', | |
default='127.0.0.1', | |
help='gradio server listen address (default: 127.0.0.1)' | |
) | |
arg_parser.add_argument( | |
'--port', | |
default=7860, | |
help='gradio server listen port (default: 7860)' | |
) | |
arg_parser.add_argument( | |
'--share', | |
action='store_true', | |
help='let gradio create a public link for you' | |
) | |
arg_parser.add_argument( | |
'--api', | |
action='store_true', | |
help='enable api endpoint' | |
) | |
arg_parser.add_argument( | |
'--cache-examples', | |
action='store_true', | |
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa | |
) | |
args = arg_parser.parse_args() | |
app_css = ''' | |
#model_info img { | |
max-width: 100px; | |
max-height: 100px; | |
float: right; | |
} | |
#model_info p { | |
margin: unset; | |
} | |
''' | |
app = gr.Blocks( | |
theme=gr.themes.Glass(), | |
css=app_css, | |
analytics_enabled=False | |
) | |
# Load hubert model | |
hubert_model = util.load_hubert_model(device, args.hubert) | |
hubert_model.eval() | |
# Load models | |
multi_cfg = json.load(open(args.config, 'r')) | |
loaded_models = [] | |
for model_name in multi_cfg.get('models'): | |
print(f'Loading model: {model_name}') | |
# Load model info | |
model_info = json.load( | |
open(path.join('model', model_name, 'config.json'), 'r') | |
) | |
# Load RVC checkpoint | |
cpt = torch.load( | |
path.join('model', model_name, model_info['model']), | |
map_location='cpu' | |
) | |
tgt_sr = cpt['config'][-1] | |
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk | |
if_f0 = cpt.get('f0', 1) | |
net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono] | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid( | |
*cpt['config'], | |
is_half=util.is_half(device) | |
) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config']) | |
del net_g.enc_q | |
# According to original code, this thing seems necessary. | |
print(net_g.load_state_dict(cpt['weight'], strict=False)) | |
net_g.eval().to(device) | |
net_g = net_g.half() if util.is_half(device) else net_g.float() | |
vc = VC(tgt_sr, device, util.is_half(device)) | |
loaded_models.append(dict( | |
name=model_name, | |
metadata=model_info, | |
vc=vc, | |
net_g=net_g, | |
if_f0=if_f0, | |
target_sr=tgt_sr | |
)) | |
print(f'Models loaded: {len(loaded_models)}') | |
# Edge TTS speakers | |
tts_speakers_list = asyncio.run(edge_tts.list_voices()) | |
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa | |
def vc_func(input_audio, model_index, pitch_adjust, f0_method, feat_ratio): | |
if input_audio is None: | |
return (None, 'Please provide input audio.') | |
if model_index is None: | |
return (None, 'Please select a model.') | |
model = loaded_models[model_index] | |
# Reference: so-vits | |
(audio_samp, audio_npy) = input_audio | |
# Bloody hell: https://stackoverflow.com/questions/26921836/ | |
if audio_npy.dtype != np.float32: # :thonk: | |
audio_npy = ( | |
audio_npy / np.iinfo(audio_npy.dtype).max | |
).astype(np.float32) | |
if len(audio_npy.shape) > 1: | |
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) | |
if audio_samp != 16000: | |
audio_npy = librosa.resample( | |
audio_npy, | |
orig_sr=audio_samp, | |
target_sr=16000 | |
) | |
pitch_int = int(pitch_adjust) | |
times = [0, 0, 0] | |
output_audio = model['vc'].pipeline( | |
hubert_model, | |
model['net_g'], | |
model['metadata'].get('speaker_id', 0), | |
audio_npy, | |
times, | |
pitch_int, | |
f0_method, | |
path.join('model', model['name'], model['metadata']['feat_index']), | |
path.join('model', model['name'], model['metadata']['feat_npy']), | |
feat_ratio, | |
model['if_f0'] | |
) | |
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') | |
return ((model['target_sr'], output_audio), 'Success') | |
async def edge_tts_vc_func( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio | |
): | |
if input_text is None: | |
return (None, 'Please provide TTS text.') | |
if tts_speaker is None: | |
return (None, 'Please select TTS speaker.') | |
if model_index is None: | |
return (None, 'Please select a model.') | |
speaker = tts_speakers_list[tts_speaker]['ShortName'] | |
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text) | |
return vc_func( | |
(tts_sr, tts_np), | |
model_index, | |
pitch_adjust, | |
f0_method, | |
feat_ratio | |
) | |
def update_model_info(model_index): | |
if model_index is None: | |
return str( | |
'### Model info\n' | |
'Please select a model from dropdown above.' | |
) | |
model = loaded_models[model_index] | |
model_icon = model['metadata'].get('icon', '') | |
return str( | |
'### Model info\n' | |
'![model icon]({icon})' | |
'**{name}**\n\n' | |
'Author: {author}\n\n' | |
'Source: {source}\n\n' | |
'{note}' | |
).format( | |
name=model['metadata'].get('name'), | |
author=model['metadata'].get('author', 'Anonymous'), | |
source=model['metadata'].get('source', 'Unknown'), | |
note=model['metadata'].get('note', ''), | |
icon=( | |
model_icon | |
if model_icon.startswith(('http://', 'https://')) | |
else '/file/model/%s/%s' % (model['name'], model_icon) | |
) | |
) | |
def _example_vc(input_audio, model_index, pitch_adjust, f0_method, feat_ratio): | |
(audio, message) = vc_func( | |
input_audio, model_index, pitch_adjust, f0_method, feat_ratio | |
) | |
return ( | |
audio, | |
message, | |
update_model_info(model_index) | |
) | |
async def _example_edge_tts( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio | |
): | |
(audio, message) = await edge_tts_vc_func( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, | |
feat_ratio | |
) | |
return ( | |
audio, | |
message, | |
update_model_info(model_index) | |
) | |
with app: | |
gr.Markdown( | |
'## Simple, Stupid RVC Inference WebUI\n' | |
'Another RVC inference WebUI based on [RVC-WebUI](https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI), ' # noqa | |
'some code and features inspired from so-vits and [zomehwh/rvc-models](https://huggingface.co/spaces/zomehwh/rvc-models).\n' # noqa | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab('Audio conversion'): | |
input_audio = gr.Audio(label='Input audio') | |
vc_convert_btn = gr.Button('Convert', variant='primary') | |
with gr.Tab('TTS conversion'): | |
tts_input = gr.TextArea( | |
label='TTS input text' | |
) | |
tts_speaker = gr.Dropdown( | |
[ | |
'%s (%s)' % ( | |
s['FriendlyName'], | |
s['Gender'] | |
) | |
for s in tts_speakers_list | |
], | |
label='TTS speaker', | |
type='index' | |
) | |
tts_convert_btn = gr.Button('Convert', variant='primary') | |
pitch_adjust = gr.Slider( | |
label='Pitch', | |
minimum=-24, | |
maximum=24, | |
step=1, | |
value=0 | |
) | |
f0_method = gr.Radio( | |
label='f0 methods', | |
choices=['pm', 'harvest'], | |
value='pm', | |
interactive=True | |
) | |
feat_ratio = gr.Slider( | |
label='Feature ratio', | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.6 | |
) | |
with gr.Column(): | |
# Model select | |
model_index = gr.Dropdown( | |
[ | |
'%s - %s' % ( | |
m['metadata'].get('source', 'Unknown'), | |
m['metadata'].get('name') | |
) | |
for m in loaded_models | |
], | |
label='Model', | |
type='index' | |
) | |
# Model info | |
with gr.Box(): | |
model_info = gr.Markdown( | |
'### Model info\n' | |
'Please select a model from dropdown above.', | |
elem_id='model_info' | |
) | |
output_audio = gr.Audio(label='Output audio') | |
output_msg = gr.Textbox(label='Output message') | |
multi_examples = multi_cfg.get('examples') | |
if multi_examples: | |
with gr.Accordion('Sweet sweet examples', open=False): | |
with gr.Row(): | |
# VC Example | |
if multi_examples.get('vc'): | |
gr.Examples( | |
label='Audio conversion examples', | |
examples=multi_examples.get('vc'), | |
inputs=[ | |
input_audio, model_index, pitch_adjust, f0_method, | |
feat_ratio | |
], | |
outputs=[output_audio, output_msg, model_info], | |
fn=_example_vc, | |
cache_examples=args.cache_examples, | |
run_on_click=args.cache_examples | |
) | |
# Edge TTS Example | |
if multi_examples.get('tts_vc'): | |
gr.Examples( | |
label='TTS conversion examples', | |
examples=multi_examples.get('tts_vc'), | |
inputs=[ | |
tts_input, model_index, tts_speaker, pitch_adjust, | |
f0_method, feat_ratio | |
], | |
outputs=[output_audio, output_msg, model_info], | |
fn=_example_edge_tts, | |
cache_examples=args.cache_examples, | |
run_on_click=args.cache_examples | |
) | |
vc_convert_btn.click( | |
vc_func, | |
[input_audio, model_index, pitch_adjust, f0_method, feat_ratio], | |
[output_audio, output_msg], | |
api_name='audio_conversion' | |
) | |
tts_convert_btn.click( | |
edge_tts_vc_func, | |
[ | |
tts_input, model_index, tts_speaker, pitch_adjust, f0_method, | |
feat_ratio | |
], | |
[output_audio, output_msg], | |
api_name='tts_conversion' | |
) | |
model_index.change( | |
update_model_info, | |
inputs=[model_index], | |
outputs=[model_info], | |
show_progress=False, | |
queue=False | |
) | |
app.queue( | |
concurrency_count=1, | |
max_size=20, | |
api_open=args.api | |
).launch( | |
server_name=args.bind, | |
server_port=args.port, | |
share=args.share | |
) | |