Spaces:
Runtime error
Runtime error
DJQmUKV
commited on
Commit
·
8b96836
1
Parent(s):
a68da1e
init: real initial commit
Browse filesthe "mian" branch... good.
- LICENSE +51 -0
- README.md +6 -7
- app_multi.py +415 -0
- config.py +17 -0
- hubert_base.pt +3 -0
- infer_pack/attentions.py +417 -0
- infer_pack/commons.py +164 -0
- infer_pack/models.py +892 -0
- infer_pack/models_onnx.py +764 -0
- infer_pack/modules.py +522 -0
- infer_pack/transforms.py +193 -0
- requirements.txt +11 -0
- util.py +75 -0
- vc_infer_pipeline.py +165 -0
LICENSE
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 liujing04
|
4 |
+
Copyright (c) 2023 源文雨
|
5 |
+
Copyright (c) 2023 on9.moe Webslaves
|
6 |
+
|
7 |
+
本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
|
8 |
+
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
|
9 |
+
|
10 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
13 |
+
|
14 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
15 |
+
|
16 |
+
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
|
17 |
+
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
|
18 |
+
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
|
19 |
+
|
20 |
+
相关引用库协议如下:
|
21 |
+
#################
|
22 |
+
ContentVec
|
23 |
+
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
|
24 |
+
MIT License
|
25 |
+
#################
|
26 |
+
VITS
|
27 |
+
https://github.com/jaywalnut310/vits/blob/main/LICENSE
|
28 |
+
MIT License
|
29 |
+
#################
|
30 |
+
HIFIGAN
|
31 |
+
https://github.com/jik876/hifi-gan/blob/master/LICENSE
|
32 |
+
MIT License
|
33 |
+
#################
|
34 |
+
gradio
|
35 |
+
https://github.com/gradio-app/gradio/blob/main/LICENSE
|
36 |
+
Apache License 2.0
|
37 |
+
#################
|
38 |
+
ffmpeg
|
39 |
+
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
|
40 |
+
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
|
41 |
+
LPGLv3 License
|
42 |
+
MIT License
|
43 |
+
#################
|
44 |
+
ultimatevocalremovergui
|
45 |
+
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
|
46 |
+
https://github.com/yang123qwe/vocal_separation_by_uvr5
|
47 |
+
MIT License
|
48 |
+
#################
|
49 |
+
audio-slicer
|
50 |
+
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
|
51 |
+
MIT License
|
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.3
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: RVC Inference
|
3 |
+
emoji: 🎙
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.28.3
|
8 |
+
app_file: app_multi.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
+
Great Value RVC models, quality and accuracy not guaranteed.
|
|
app_multi.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
|
5 |
+
import asyncio
|
6 |
+
import json
|
7 |
+
from os import path
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import librosa
|
15 |
+
|
16 |
+
import edge_tts
|
17 |
+
|
18 |
+
from config import device
|
19 |
+
import util
|
20 |
+
from infer_pack.models import (
|
21 |
+
SynthesizerTrnMs256NSFsid,
|
22 |
+
SynthesizerTrnMs256NSFsid_nono
|
23 |
+
)
|
24 |
+
from vc_infer_pipeline import VC
|
25 |
+
|
26 |
+
|
27 |
+
# Argument parsing
|
28 |
+
arg_parser = ArgumentParser()
|
29 |
+
arg_parser.add_argument(
|
30 |
+
'--hubert',
|
31 |
+
default='hubert_base.pt',
|
32 |
+
help='path to hubert base model (default: hubert_base.pt)'
|
33 |
+
)
|
34 |
+
arg_parser.add_argument(
|
35 |
+
'--config',
|
36 |
+
default='multi_config.json',
|
37 |
+
help='path to config file (default: multi_config.json)'
|
38 |
+
)
|
39 |
+
arg_parser.add_argument(
|
40 |
+
'--bind',
|
41 |
+
default='127.0.0.1',
|
42 |
+
help='gradio server listen address (default: 127.0.0.1)'
|
43 |
+
)
|
44 |
+
arg_parser.add_argument(
|
45 |
+
'--port',
|
46 |
+
default=7860,
|
47 |
+
help='gradio server listen port (default: 7860)'
|
48 |
+
)
|
49 |
+
arg_parser.add_argument(
|
50 |
+
'--share',
|
51 |
+
action='store_true',
|
52 |
+
help='let gradio create a public link for you'
|
53 |
+
)
|
54 |
+
arg_parser.add_argument(
|
55 |
+
'--api',
|
56 |
+
action='store_true',
|
57 |
+
help='enable api endpoint'
|
58 |
+
)
|
59 |
+
arg_parser.add_argument(
|
60 |
+
'--cache-examples',
|
61 |
+
action='store_true',
|
62 |
+
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
|
63 |
+
)
|
64 |
+
args = arg_parser.parse_args()
|
65 |
+
|
66 |
+
app_css = '''
|
67 |
+
#model_info img {
|
68 |
+
max-width: 100px;
|
69 |
+
max-height: 100px;
|
70 |
+
float: right;
|
71 |
+
}
|
72 |
+
|
73 |
+
#model_info p {
|
74 |
+
margin: unset;
|
75 |
+
}
|
76 |
+
'''
|
77 |
+
|
78 |
+
app = gr.Blocks(
|
79 |
+
theme=gr.themes.Glass(),
|
80 |
+
css=app_css,
|
81 |
+
analytics_enabled=False
|
82 |
+
)
|
83 |
+
|
84 |
+
# Load hubert model
|
85 |
+
hubert_model = util.load_hubert_model(device, args.hubert)
|
86 |
+
hubert_model.eval()
|
87 |
+
|
88 |
+
# Load models
|
89 |
+
multi_cfg = json.load(open(args.config, 'r'))
|
90 |
+
loaded_models = []
|
91 |
+
|
92 |
+
for model_name in multi_cfg.get('models'):
|
93 |
+
print(f'Loading model: {model_name}')
|
94 |
+
|
95 |
+
# Load model info
|
96 |
+
model_info = json.load(
|
97 |
+
open(path.join('model', model_name, 'config.json'), 'r')
|
98 |
+
)
|
99 |
+
|
100 |
+
# Load RVC checkpoint
|
101 |
+
cpt = torch.load(
|
102 |
+
path.join('model', model_name, model_info['model']),
|
103 |
+
map_location='cpu'
|
104 |
+
)
|
105 |
+
tgt_sr = cpt['config'][-1]
|
106 |
+
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
|
107 |
+
|
108 |
+
if_f0 = cpt.get('f0', 1)
|
109 |
+
net_g: Union[SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono]
|
110 |
+
if if_f0 == 1:
|
111 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
112 |
+
*cpt['config'],
|
113 |
+
is_half=util.is_half(device)
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])
|
117 |
+
|
118 |
+
del net_g.enc_q
|
119 |
+
|
120 |
+
# According to original code, this thing seems necessary.
|
121 |
+
print(net_g.load_state_dict(cpt['weight'], strict=False))
|
122 |
+
|
123 |
+
net_g.eval().to(device)
|
124 |
+
net_g = net_g.half() if util.is_half(device) else net_g.float()
|
125 |
+
|
126 |
+
vc = VC(tgt_sr, device, util.is_half(device))
|
127 |
+
|
128 |
+
loaded_models.append(dict(
|
129 |
+
name=model_name,
|
130 |
+
metadata=model_info,
|
131 |
+
vc=vc,
|
132 |
+
net_g=net_g,
|
133 |
+
if_f0=if_f0,
|
134 |
+
target_sr=tgt_sr
|
135 |
+
))
|
136 |
+
|
137 |
+
print(f'Models loaded: {len(loaded_models)}')
|
138 |
+
|
139 |
+
# Edge TTS speakers
|
140 |
+
tts_speakers_list = asyncio.run(edge_tts.list_voices())
|
141 |
+
|
142 |
+
|
143 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
|
144 |
+
def vc_func(input_audio, model_index, pitch_adjust, f0_method, feat_ratio):
|
145 |
+
if input_audio is None:
|
146 |
+
return (None, 'Please provide input audio.')
|
147 |
+
|
148 |
+
if model_index is None:
|
149 |
+
return (None, 'Please select a model.')
|
150 |
+
|
151 |
+
model = loaded_models[model_index]
|
152 |
+
|
153 |
+
# Reference: so-vits
|
154 |
+
(audio_samp, audio_npy) = input_audio
|
155 |
+
# Bloody hell: https://stackoverflow.com/questions/26921836/
|
156 |
+
if audio_npy.dtype != np.float32: # :thonk:
|
157 |
+
audio_npy = (
|
158 |
+
audio_npy / np.iinfo(audio_npy.dtype).max
|
159 |
+
).astype(np.float32)
|
160 |
+
|
161 |
+
if len(audio_npy.shape) > 1:
|
162 |
+
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
|
163 |
+
|
164 |
+
if audio_samp != 16000:
|
165 |
+
audio_npy = librosa.resample(
|
166 |
+
audio_npy,
|
167 |
+
orig_sr=audio_samp,
|
168 |
+
target_sr=16000
|
169 |
+
)
|
170 |
+
|
171 |
+
pitch_int = int(pitch_adjust)
|
172 |
+
|
173 |
+
times = [0, 0, 0]
|
174 |
+
output_audio = model['vc'].pipeline(
|
175 |
+
hubert_model,
|
176 |
+
model['net_g'],
|
177 |
+
model['metadata'].get('speaker_id', 0),
|
178 |
+
audio_npy,
|
179 |
+
times,
|
180 |
+
pitch_int,
|
181 |
+
f0_method,
|
182 |
+
path.join('model', model['name'], model['metadata']['feat_index']),
|
183 |
+
path.join('model', model['name'], model['metadata']['feat_npy']),
|
184 |
+
feat_ratio,
|
185 |
+
model['if_f0']
|
186 |
+
)
|
187 |
+
|
188 |
+
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
|
189 |
+
return ((model['target_sr'], output_audio), 'Success')
|
190 |
+
|
191 |
+
|
192 |
+
async def edge_tts_vc_func(
|
193 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio
|
194 |
+
):
|
195 |
+
if input_text is None:
|
196 |
+
return (None, 'Please provide TTS text.')
|
197 |
+
|
198 |
+
if tts_speaker is None:
|
199 |
+
return (None, 'Please select TTS speaker.')
|
200 |
+
|
201 |
+
if model_index is None:
|
202 |
+
return (None, 'Please select a model.')
|
203 |
+
|
204 |
+
speaker = tts_speakers_list[tts_speaker]['ShortName']
|
205 |
+
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
|
206 |
+
return vc_func(
|
207 |
+
(tts_sr, tts_np),
|
208 |
+
model_index,
|
209 |
+
pitch_adjust,
|
210 |
+
f0_method,
|
211 |
+
feat_ratio
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
def update_model_info(model_index):
|
216 |
+
if model_index is None:
|
217 |
+
return str(
|
218 |
+
'### Model info\n'
|
219 |
+
'Please select a model from dropdown above.'
|
220 |
+
)
|
221 |
+
|
222 |
+
model = loaded_models[model_index]
|
223 |
+
model_icon = model['metadata'].get('icon', '')
|
224 |
+
|
225 |
+
return str(
|
226 |
+
'### Model info\n'
|
227 |
+
'![model icon]({icon})'
|
228 |
+
'**{name}**\n\n'
|
229 |
+
'Author: {author}\n\n'
|
230 |
+
'Source: {source}\n\n'
|
231 |
+
'{note}'
|
232 |
+
).format(
|
233 |
+
name=model['metadata'].get('name'),
|
234 |
+
author=model['metadata'].get('author', 'Anonymous'),
|
235 |
+
source=model['metadata'].get('source', 'Unknown'),
|
236 |
+
note=model['metadata'].get('note', ''),
|
237 |
+
icon=(
|
238 |
+
model_icon
|
239 |
+
if model_icon.startswith(('http://', 'https://'))
|
240 |
+
else '/file/model/%s/%s' % (model['name'], model_icon)
|
241 |
+
)
|
242 |
+
)
|
243 |
+
|
244 |
+
|
245 |
+
def _example_vc(input_audio, model_index, pitch_adjust, f0_method, feat_ratio):
|
246 |
+
(audio, message) = vc_func(
|
247 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio
|
248 |
+
)
|
249 |
+
return (
|
250 |
+
audio,
|
251 |
+
message,
|
252 |
+
update_model_info(model_index)
|
253 |
+
)
|
254 |
+
|
255 |
+
|
256 |
+
async def _example_edge_tts(
|
257 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio
|
258 |
+
):
|
259 |
+
(audio, message) = await edge_tts_vc_func(
|
260 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method,
|
261 |
+
feat_ratio
|
262 |
+
)
|
263 |
+
return (
|
264 |
+
audio,
|
265 |
+
message,
|
266 |
+
update_model_info(model_index)
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
with app:
|
271 |
+
gr.Markdown(
|
272 |
+
'## Simple, Stupid RVC Inference WebUI\n'
|
273 |
+
'Another RVC inference WebUI based on [RVC-WebUI](https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI), ' # noqa
|
274 |
+
'some code and features inspired from so-vits and [zomehwh/rvc-models](https://huggingface.co/spaces/zomehwh/rvc-models).\n' # noqa
|
275 |
+
)
|
276 |
+
|
277 |
+
with gr.Row():
|
278 |
+
with gr.Column():
|
279 |
+
with gr.Tab('Audio conversion'):
|
280 |
+
input_audio = gr.Audio(label='Input audio')
|
281 |
+
|
282 |
+
vc_convert_btn = gr.Button('Convert', variant='primary')
|
283 |
+
|
284 |
+
with gr.Tab('TTS conversion'):
|
285 |
+
tts_input = gr.TextArea(
|
286 |
+
label='TTS input text'
|
287 |
+
)
|
288 |
+
tts_speaker = gr.Dropdown(
|
289 |
+
[
|
290 |
+
'%s (%s)' % (
|
291 |
+
s['FriendlyName'],
|
292 |
+
s['Gender']
|
293 |
+
)
|
294 |
+
for s in tts_speakers_list
|
295 |
+
],
|
296 |
+
label='TTS speaker',
|
297 |
+
type='index'
|
298 |
+
)
|
299 |
+
|
300 |
+
tts_convert_btn = gr.Button('Convert', variant='primary')
|
301 |
+
|
302 |
+
pitch_adjust = gr.Slider(
|
303 |
+
label='Pitch',
|
304 |
+
minimum=-24,
|
305 |
+
maximum=24,
|
306 |
+
step=1,
|
307 |
+
value=0
|
308 |
+
)
|
309 |
+
f0_method = gr.Radio(
|
310 |
+
label='f0 methods',
|
311 |
+
choices=['pm', 'harvest'],
|
312 |
+
value='pm',
|
313 |
+
interactive=True
|
314 |
+
)
|
315 |
+
feat_ratio = gr.Slider(
|
316 |
+
label='Feature ratio',
|
317 |
+
minimum=0,
|
318 |
+
maximum=1,
|
319 |
+
step=0.1,
|
320 |
+
value=0.6
|
321 |
+
)
|
322 |
+
|
323 |
+
with gr.Column():
|
324 |
+
# Model select
|
325 |
+
model_index = gr.Dropdown(
|
326 |
+
[
|
327 |
+
'%s - %s' % (
|
328 |
+
m['metadata'].get('source', 'Unknown'),
|
329 |
+
m['metadata'].get('name')
|
330 |
+
)
|
331 |
+
for m in loaded_models
|
332 |
+
],
|
333 |
+
label='Model',
|
334 |
+
type='index'
|
335 |
+
)
|
336 |
+
|
337 |
+
# Model info
|
338 |
+
with gr.Box():
|
339 |
+
model_info = gr.Markdown(
|
340 |
+
'### Model info\n'
|
341 |
+
'Please select a model from dropdown above.',
|
342 |
+
elem_id='model_info'
|
343 |
+
)
|
344 |
+
|
345 |
+
output_audio = gr.Audio(label='Output audio')
|
346 |
+
output_msg = gr.Textbox(label='Output message')
|
347 |
+
|
348 |
+
multi_examples = multi_cfg.get('examples')
|
349 |
+
if multi_examples:
|
350 |
+
with gr.Accordion('Sweet sweet examples', open=False):
|
351 |
+
with gr.Row():
|
352 |
+
# VC Example
|
353 |
+
if multi_examples.get('vc'):
|
354 |
+
gr.Examples(
|
355 |
+
label='Audio conversion examples',
|
356 |
+
examples=multi_examples.get('vc'),
|
357 |
+
inputs=[
|
358 |
+
input_audio, model_index, pitch_adjust, f0_method,
|
359 |
+
feat_ratio
|
360 |
+
],
|
361 |
+
outputs=[output_audio, output_msg, model_info],
|
362 |
+
fn=_example_vc,
|
363 |
+
cache_examples=args.cache_examples,
|
364 |
+
run_on_click=args.cache_examples
|
365 |
+
)
|
366 |
+
|
367 |
+
# Edge TTS Example
|
368 |
+
if multi_examples.get('tts_vc'):
|
369 |
+
gr.Examples(
|
370 |
+
label='TTS conversion examples',
|
371 |
+
examples=multi_examples.get('tts_vc'),
|
372 |
+
inputs=[
|
373 |
+
tts_input, model_index, tts_speaker, pitch_adjust,
|
374 |
+
f0_method, feat_ratio
|
375 |
+
],
|
376 |
+
outputs=[output_audio, output_msg, model_info],
|
377 |
+
fn=_example_edge_tts,
|
378 |
+
cache_examples=args.cache_examples,
|
379 |
+
run_on_click=args.cache_examples
|
380 |
+
)
|
381 |
+
|
382 |
+
vc_convert_btn.click(
|
383 |
+
vc_func,
|
384 |
+
[input_audio, model_index, pitch_adjust, f0_method, feat_ratio],
|
385 |
+
[output_audio, output_msg],
|
386 |
+
api_name='audio_conversion'
|
387 |
+
)
|
388 |
+
|
389 |
+
tts_convert_btn.click(
|
390 |
+
edge_tts_vc_func,
|
391 |
+
[
|
392 |
+
tts_input, model_index, tts_speaker, pitch_adjust, f0_method,
|
393 |
+
feat_ratio
|
394 |
+
],
|
395 |
+
[output_audio, output_msg],
|
396 |
+
api_name='tts_conversion'
|
397 |
+
)
|
398 |
+
|
399 |
+
model_index.change(
|
400 |
+
update_model_info,
|
401 |
+
inputs=[model_index],
|
402 |
+
outputs=[model_info],
|
403 |
+
show_progress=False,
|
404 |
+
queue=False
|
405 |
+
)
|
406 |
+
|
407 |
+
app.queue(
|
408 |
+
concurrency_count=1,
|
409 |
+
max_size=20,
|
410 |
+
api_open=args.api
|
411 |
+
).launch(
|
412 |
+
server_name=args.bind,
|
413 |
+
server_port=args.port,
|
414 |
+
share=args.share
|
415 |
+
)
|
config.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import util
|
4 |
+
|
5 |
+
|
6 |
+
device = (
|
7 |
+
'cuda:0' if torch.cuda.is_available()
|
8 |
+
else (
|
9 |
+
'mps' if util.has_mps()
|
10 |
+
else 'cpu'
|
11 |
+
)
|
12 |
+
)
|
13 |
+
|
14 |
+
x_pad = 3 if util.is_half(device) else 1
|
15 |
+
x_query = 10 if util.is_half(device) else 6
|
16 |
+
x_center = 60 if util.is_half(device) else 38
|
17 |
+
x_max = 65 if util.is_half(device) else 41
|
hubert_base.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
|
3 |
+
size 189507909
|
infer_pack/attentions.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from infer_pack import commons
|
9 |
+
from infer_pack import modules
|
10 |
+
from infer_pack.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
hidden_channels,
|
17 |
+
filter_channels,
|
18 |
+
n_heads,
|
19 |
+
n_layers,
|
20 |
+
kernel_size=1,
|
21 |
+
p_dropout=0.0,
|
22 |
+
window_size=10,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.hidden_channels = hidden_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.n_heads = n_heads
|
29 |
+
self.n_layers = n_layers
|
30 |
+
self.kernel_size = kernel_size
|
31 |
+
self.p_dropout = p_dropout
|
32 |
+
self.window_size = window_size
|
33 |
+
|
34 |
+
self.drop = nn.Dropout(p_dropout)
|
35 |
+
self.attn_layers = nn.ModuleList()
|
36 |
+
self.norm_layers_1 = nn.ModuleList()
|
37 |
+
self.ffn_layers = nn.ModuleList()
|
38 |
+
self.norm_layers_2 = nn.ModuleList()
|
39 |
+
for i in range(self.n_layers):
|
40 |
+
self.attn_layers.append(
|
41 |
+
MultiHeadAttention(
|
42 |
+
hidden_channels,
|
43 |
+
hidden_channels,
|
44 |
+
n_heads,
|
45 |
+
p_dropout=p_dropout,
|
46 |
+
window_size=window_size,
|
47 |
+
)
|
48 |
+
)
|
49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
+
self.ffn_layers.append(
|
51 |
+
FFN(
|
52 |
+
hidden_channels,
|
53 |
+
hidden_channels,
|
54 |
+
filter_channels,
|
55 |
+
kernel_size,
|
56 |
+
p_dropout=p_dropout,
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
+
|
61 |
+
def forward(self, x, x_mask):
|
62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
63 |
+
x = x * x_mask
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
66 |
+
y = self.drop(y)
|
67 |
+
x = self.norm_layers_1[i](x + y)
|
68 |
+
|
69 |
+
y = self.ffn_layers[i](x, x_mask)
|
70 |
+
y = self.drop(y)
|
71 |
+
x = self.norm_layers_2[i](x + y)
|
72 |
+
x = x * x_mask
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Decoder(nn.Module):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
hidden_channels,
|
80 |
+
filter_channels,
|
81 |
+
n_heads,
|
82 |
+
n_layers,
|
83 |
+
kernel_size=1,
|
84 |
+
p_dropout=0.0,
|
85 |
+
proximal_bias=False,
|
86 |
+
proximal_init=True,
|
87 |
+
**kwargs
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
self.hidden_channels = hidden_channels
|
91 |
+
self.filter_channels = filter_channels
|
92 |
+
self.n_heads = n_heads
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.kernel_size = kernel_size
|
95 |
+
self.p_dropout = p_dropout
|
96 |
+
self.proximal_bias = proximal_bias
|
97 |
+
self.proximal_init = proximal_init
|
98 |
+
|
99 |
+
self.drop = nn.Dropout(p_dropout)
|
100 |
+
self.self_attn_layers = nn.ModuleList()
|
101 |
+
self.norm_layers_0 = nn.ModuleList()
|
102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
103 |
+
self.norm_layers_1 = nn.ModuleList()
|
104 |
+
self.ffn_layers = nn.ModuleList()
|
105 |
+
self.norm_layers_2 = nn.ModuleList()
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
self.self_attn_layers.append(
|
108 |
+
MultiHeadAttention(
|
109 |
+
hidden_channels,
|
110 |
+
hidden_channels,
|
111 |
+
n_heads,
|
112 |
+
p_dropout=p_dropout,
|
113 |
+
proximal_bias=proximal_bias,
|
114 |
+
proximal_init=proximal_init,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(
|
119 |
+
MultiHeadAttention(
|
120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
121 |
+
)
|
122 |
+
)
|
123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
124 |
+
self.ffn_layers.append(
|
125 |
+
FFN(
|
126 |
+
hidden_channels,
|
127 |
+
hidden_channels,
|
128 |
+
filter_channels,
|
129 |
+
kernel_size,
|
130 |
+
p_dropout=p_dropout,
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
)
|
134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
135 |
+
|
136 |
+
def forward(self, x, x_mask, h, h_mask):
|
137 |
+
"""
|
138 |
+
x: decoder input
|
139 |
+
h: encoder output
|
140 |
+
"""
|
141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
142 |
+
device=x.device, dtype=x.dtype
|
143 |
+
)
|
144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
145 |
+
x = x * x_mask
|
146 |
+
for i in range(self.n_layers):
|
147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
148 |
+
y = self.drop(y)
|
149 |
+
x = self.norm_layers_0[i](x + y)
|
150 |
+
|
151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_1[i](x + y)
|
154 |
+
|
155 |
+
y = self.ffn_layers[i](x, x_mask)
|
156 |
+
y = self.drop(y)
|
157 |
+
x = self.norm_layers_2[i](x + y)
|
158 |
+
x = x * x_mask
|
159 |
+
return x
|
160 |
+
|
161 |
+
|
162 |
+
class MultiHeadAttention(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
channels,
|
166 |
+
out_channels,
|
167 |
+
n_heads,
|
168 |
+
p_dropout=0.0,
|
169 |
+
window_size=None,
|
170 |
+
heads_share=True,
|
171 |
+
block_length=None,
|
172 |
+
proximal_bias=False,
|
173 |
+
proximal_init=False,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
assert channels % n_heads == 0
|
177 |
+
|
178 |
+
self.channels = channels
|
179 |
+
self.out_channels = out_channels
|
180 |
+
self.n_heads = n_heads
|
181 |
+
self.p_dropout = p_dropout
|
182 |
+
self.window_size = window_size
|
183 |
+
self.heads_share = heads_share
|
184 |
+
self.block_length = block_length
|
185 |
+
self.proximal_bias = proximal_bias
|
186 |
+
self.proximal_init = proximal_init
|
187 |
+
self.attn = None
|
188 |
+
|
189 |
+
self.k_channels = channels // n_heads
|
190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
194 |
+
self.drop = nn.Dropout(p_dropout)
|
195 |
+
|
196 |
+
if window_size is not None:
|
197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
198 |
+
rel_stddev = self.k_channels**-0.5
|
199 |
+
self.emb_rel_k = nn.Parameter(
|
200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
+
* rel_stddev
|
202 |
+
)
|
203 |
+
self.emb_rel_v = nn.Parameter(
|
204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
+
* rel_stddev
|
206 |
+
)
|
207 |
+
|
208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
211 |
+
if proximal_init:
|
212 |
+
with torch.no_grad():
|
213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
215 |
+
|
216 |
+
def forward(self, x, c, attn_mask=None):
|
217 |
+
q = self.conv_q(x)
|
218 |
+
k = self.conv_k(c)
|
219 |
+
v = self.conv_v(c)
|
220 |
+
|
221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
+
|
223 |
+
x = self.conv_o(x)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def attention(self, query, key, value, mask=None):
|
227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
232 |
+
|
233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
234 |
+
if self.window_size is not None:
|
235 |
+
assert (
|
236 |
+
t_s == t_t
|
237 |
+
), "Relative attention is only available for self-attention."
|
238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
239 |
+
rel_logits = self._matmul_with_relative_keys(
|
240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
241 |
+
)
|
242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
243 |
+
scores = scores + scores_local
|
244 |
+
if self.proximal_bias:
|
245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
247 |
+
device=scores.device, dtype=scores.dtype
|
248 |
+
)
|
249 |
+
if mask is not None:
|
250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
251 |
+
if self.block_length is not None:
|
252 |
+
assert (
|
253 |
+
t_s == t_t
|
254 |
+
), "Local attention is only available for self-attention."
|
255 |
+
block_mask = (
|
256 |
+
torch.ones_like(scores)
|
257 |
+
.triu(-self.block_length)
|
258 |
+
.tril(self.block_length)
|
259 |
+
)
|
260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
262 |
+
p_attn = self.drop(p_attn)
|
263 |
+
output = torch.matmul(p_attn, value)
|
264 |
+
if self.window_size is not None:
|
265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
267 |
+
self.emb_rel_v, t_s
|
268 |
+
)
|
269 |
+
output = output + self._matmul_with_relative_values(
|
270 |
+
relative_weights, value_relative_embeddings
|
271 |
+
)
|
272 |
+
output = (
|
273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
275 |
+
return output, p_attn
|
276 |
+
|
277 |
+
def _matmul_with_relative_values(self, x, y):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, m]
|
280 |
+
y: [h or 1, m, d]
|
281 |
+
ret: [b, h, l, d]
|
282 |
+
"""
|
283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
284 |
+
return ret
|
285 |
+
|
286 |
+
def _matmul_with_relative_keys(self, x, y):
|
287 |
+
"""
|
288 |
+
x: [b, h, l, d]
|
289 |
+
y: [h or 1, m, d]
|
290 |
+
ret: [b, h, l, m]
|
291 |
+
"""
|
292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
293 |
+
return ret
|
294 |
+
|
295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
296 |
+
max_relative_position = 2 * self.window_size + 1
|
297 |
+
# Pad first before slice to avoid using cond ops.
|
298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
301 |
+
if pad_length > 0:
|
302 |
+
padded_relative_embeddings = F.pad(
|
303 |
+
relative_embeddings,
|
304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
padded_relative_embeddings = relative_embeddings
|
308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
309 |
+
:, slice_start_position:slice_end_position
|
310 |
+
]
|
311 |
+
return used_relative_embeddings
|
312 |
+
|
313 |
+
def _relative_position_to_absolute_position(self, x):
|
314 |
+
"""
|
315 |
+
x: [b, h, l, 2*l-1]
|
316 |
+
ret: [b, h, l, l]
|
317 |
+
"""
|
318 |
+
batch, heads, length, _ = x.size()
|
319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
321 |
+
|
322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
324 |
+
x_flat = F.pad(
|
325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
326 |
+
)
|
327 |
+
|
328 |
+
# Reshape and slice out the padded elements.
|
329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
330 |
+
:, :, :length, length - 1 :
|
331 |
+
]
|
332 |
+
return x_final
|
333 |
+
|
334 |
+
def _absolute_position_to_relative_position(self, x):
|
335 |
+
"""
|
336 |
+
x: [b, h, l, l]
|
337 |
+
ret: [b, h, l, 2*l-1]
|
338 |
+
"""
|
339 |
+
batch, heads, length, _ = x.size()
|
340 |
+
# padd along column
|
341 |
+
x = F.pad(
|
342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
343 |
+
)
|
344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
348 |
+
return x_final
|
349 |
+
|
350 |
+
def _attention_bias_proximal(self, length):
|
351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
352 |
+
Args:
|
353 |
+
length: an integer scalar.
|
354 |
+
Returns:
|
355 |
+
a Tensor with shape [1, 1, length, length]
|
356 |
+
"""
|
357 |
+
r = torch.arange(length, dtype=torch.float32)
|
358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
360 |
+
|
361 |
+
|
362 |
+
class FFN(nn.Module):
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
in_channels,
|
366 |
+
out_channels,
|
367 |
+
filter_channels,
|
368 |
+
kernel_size,
|
369 |
+
p_dropout=0.0,
|
370 |
+
activation=None,
|
371 |
+
causal=False,
|
372 |
+
):
|
373 |
+
super().__init__()
|
374 |
+
self.in_channels = in_channels
|
375 |
+
self.out_channels = out_channels
|
376 |
+
self.filter_channels = filter_channels
|
377 |
+
self.kernel_size = kernel_size
|
378 |
+
self.p_dropout = p_dropout
|
379 |
+
self.activation = activation
|
380 |
+
self.causal = causal
|
381 |
+
|
382 |
+
if causal:
|
383 |
+
self.padding = self._causal_padding
|
384 |
+
else:
|
385 |
+
self.padding = self._same_padding
|
386 |
+
|
387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
389 |
+
self.drop = nn.Dropout(p_dropout)
|
390 |
+
|
391 |
+
def forward(self, x, x_mask):
|
392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
393 |
+
if self.activation == "gelu":
|
394 |
+
x = x * torch.sigmoid(1.702 * x)
|
395 |
+
else:
|
396 |
+
x = torch.relu(x)
|
397 |
+
x = self.drop(x)
|
398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
399 |
+
return x * x_mask
|
400 |
+
|
401 |
+
def _causal_padding(self, x):
|
402 |
+
if self.kernel_size == 1:
|
403 |
+
return x
|
404 |
+
pad_l = self.kernel_size - 1
|
405 |
+
pad_r = 0
|
406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
408 |
+
return x
|
409 |
+
|
410 |
+
def _same_padding(self, x):
|
411 |
+
if self.kernel_size == 1:
|
412 |
+
return x
|
413 |
+
pad_l = (self.kernel_size - 1) // 2
|
414 |
+
pad_r = self.kernel_size // 2
|
415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
417 |
+
return x
|
infer_pack/commons.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
25 |
+
"""KL(P||Q)"""
|
26 |
+
kl = (logs_q - logs_p) - 0.5
|
27 |
+
kl += (
|
28 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
29 |
+
)
|
30 |
+
return kl
|
31 |
+
|
32 |
+
|
33 |
+
def rand_gumbel(shape):
|
34 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
35 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
36 |
+
return -torch.log(-torch.log(uniform_samples))
|
37 |
+
|
38 |
+
|
39 |
+
def rand_gumbel_like(x):
|
40 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
41 |
+
return g
|
42 |
+
|
43 |
+
|
44 |
+
def slice_segments(x, ids_str, segment_size=4):
|
45 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
46 |
+
for i in range(x.size(0)):
|
47 |
+
idx_str = ids_str[i]
|
48 |
+
idx_end = idx_str + segment_size
|
49 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
50 |
+
return ret
|
51 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
52 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
53 |
+
for i in range(x.size(0)):
|
54 |
+
idx_str = ids_str[i]
|
55 |
+
idx_end = idx_str + segment_size
|
56 |
+
ret[i] = x[i, idx_str:idx_end]
|
57 |
+
return ret
|
58 |
+
|
59 |
+
|
60 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
+
b, d, t = x.size()
|
62 |
+
if x_lengths is None:
|
63 |
+
x_lengths = t
|
64 |
+
ids_str_max = x_lengths - segment_size + 1
|
65 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
+
ret = slice_segments(x, ids_str, segment_size)
|
67 |
+
return ret, ids_str
|
68 |
+
|
69 |
+
|
70 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
71 |
+
position = torch.arange(length, dtype=torch.float)
|
72 |
+
num_timescales = channels // 2
|
73 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
74 |
+
num_timescales - 1
|
75 |
+
)
|
76 |
+
inv_timescales = min_timescale * torch.exp(
|
77 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
78 |
+
)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
+
|
91 |
+
|
92 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
+
b, channels, length = x.size()
|
94 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
+
|
97 |
+
|
98 |
+
def subsequent_mask(length):
|
99 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
+
return mask
|
101 |
+
|
102 |
+
|
103 |
+
@torch.jit.script
|
104 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
+
n_channels_int = n_channels[0]
|
106 |
+
in_act = input_a + input_b
|
107 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
+
acts = t_act * s_act
|
110 |
+
return acts
|
111 |
+
|
112 |
+
|
113 |
+
def convert_pad_shape(pad_shape):
|
114 |
+
l = pad_shape[::-1]
|
115 |
+
pad_shape = [item for sublist in l for item in sublist]
|
116 |
+
return pad_shape
|
117 |
+
|
118 |
+
|
119 |
+
def shift_1d(x):
|
120 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
def sequence_mask(length, max_length=None):
|
125 |
+
if max_length is None:
|
126 |
+
max_length = length.max()
|
127 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
+
|
130 |
+
|
131 |
+
def generate_path(duration, mask):
|
132 |
+
"""
|
133 |
+
duration: [b, 1, t_x]
|
134 |
+
mask: [b, 1, t_y, t_x]
|
135 |
+
"""
|
136 |
+
device = duration.device
|
137 |
+
|
138 |
+
b, _, t_y, t_x = mask.shape
|
139 |
+
cum_duration = torch.cumsum(duration, -1)
|
140 |
+
|
141 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
+
path = path.view(b, t_x, t_y)
|
144 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
146 |
+
return path
|
147 |
+
|
148 |
+
|
149 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
+
if isinstance(parameters, torch.Tensor):
|
151 |
+
parameters = [parameters]
|
152 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
+
norm_type = float(norm_type)
|
154 |
+
if clip_value is not None:
|
155 |
+
clip_value = float(clip_value)
|
156 |
+
|
157 |
+
total_norm = 0
|
158 |
+
for p in parameters:
|
159 |
+
param_norm = p.grad.data.norm(norm_type)
|
160 |
+
total_norm += param_norm.item() ** norm_type
|
161 |
+
if clip_value is not None:
|
162 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
164 |
+
return total_norm
|
infer_pack/models.py
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math,pdb,os
|
2 |
+
from time import time as ttime
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from infer_pack import modules
|
7 |
+
from infer_pack import attentions
|
8 |
+
from infer_pack import commons
|
9 |
+
from infer_pack.commons import init_weights, get_padding
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from infer_pack.commons import init_weights
|
13 |
+
import numpy as np
|
14 |
+
from infer_pack import commons
|
15 |
+
class TextEncoder256(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
18 |
+
super().__init__()
|
19 |
+
self.out_channels = out_channels
|
20 |
+
self.hidden_channels = hidden_channels
|
21 |
+
self.filter_channels = filter_channels
|
22 |
+
self.n_heads = n_heads
|
23 |
+
self.n_layers = n_layers
|
24 |
+
self.kernel_size = kernel_size
|
25 |
+
self.p_dropout = p_dropout
|
26 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
27 |
+
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
28 |
+
if(f0==True):
|
29 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
30 |
+
self.encoder = attentions.Encoder(
|
31 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
32 |
+
)
|
33 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
34 |
+
|
35 |
+
def forward(self, phone, pitch, lengths):
|
36 |
+
if(pitch==None):
|
37 |
+
x = self.emb_phone(phone)
|
38 |
+
else:
|
39 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
40 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
41 |
+
x=self.lrelu(x)
|
42 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
43 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
44 |
+
x.dtype
|
45 |
+
)
|
46 |
+
x = self.encoder(x * x_mask, x_mask)
|
47 |
+
stats = self.proj(x) * x_mask
|
48 |
+
|
49 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
50 |
+
return m, logs, x_mask
|
51 |
+
class TextEncoder256Sim(nn.Module):
|
52 |
+
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
53 |
+
super().__init__()
|
54 |
+
self.out_channels = out_channels
|
55 |
+
self.hidden_channels = hidden_channels
|
56 |
+
self.filter_channels = filter_channels
|
57 |
+
self.n_heads = n_heads
|
58 |
+
self.n_layers = n_layers
|
59 |
+
self.kernel_size = kernel_size
|
60 |
+
self.p_dropout = p_dropout
|
61 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
62 |
+
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
63 |
+
if(f0==True):
|
64 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
65 |
+
self.encoder = attentions.Encoder(
|
66 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
67 |
+
)
|
68 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
69 |
+
|
70 |
+
def forward(self, phone, pitch, lengths):
|
71 |
+
if(pitch==None):
|
72 |
+
x = self.emb_phone(phone)
|
73 |
+
else:
|
74 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
75 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
76 |
+
x=self.lrelu(x)
|
77 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
78 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
79 |
+
x = self.encoder(x * x_mask, x_mask)
|
80 |
+
x = self.proj(x) * x_mask
|
81 |
+
return x,x_mask
|
82 |
+
class ResidualCouplingBlock(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
channels,
|
86 |
+
hidden_channels,
|
87 |
+
kernel_size,
|
88 |
+
dilation_rate,
|
89 |
+
n_layers,
|
90 |
+
n_flows=4,
|
91 |
+
gin_channels=0,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.channels = channels
|
95 |
+
self.hidden_channels = hidden_channels
|
96 |
+
self.kernel_size = kernel_size
|
97 |
+
self.dilation_rate = dilation_rate
|
98 |
+
self.n_layers = n_layers
|
99 |
+
self.n_flows = n_flows
|
100 |
+
self.gin_channels = gin_channels
|
101 |
+
|
102 |
+
self.flows = nn.ModuleList()
|
103 |
+
for i in range(n_flows):
|
104 |
+
self.flows.append(
|
105 |
+
modules.ResidualCouplingLayer(
|
106 |
+
channels,
|
107 |
+
hidden_channels,
|
108 |
+
kernel_size,
|
109 |
+
dilation_rate,
|
110 |
+
n_layers,
|
111 |
+
gin_channels=gin_channels,
|
112 |
+
mean_only=True,
|
113 |
+
)
|
114 |
+
)
|
115 |
+
self.flows.append(modules.Flip())
|
116 |
+
|
117 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
118 |
+
if not reverse:
|
119 |
+
for flow in self.flows:
|
120 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
121 |
+
else:
|
122 |
+
for flow in reversed(self.flows):
|
123 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
124 |
+
return x
|
125 |
+
|
126 |
+
def remove_weight_norm(self):
|
127 |
+
for i in range(self.n_flows):
|
128 |
+
self.flows[i * 2].remove_weight_norm()
|
129 |
+
class PosteriorEncoder(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
in_channels,
|
133 |
+
out_channels,
|
134 |
+
hidden_channels,
|
135 |
+
kernel_size,
|
136 |
+
dilation_rate,
|
137 |
+
n_layers,
|
138 |
+
gin_channels=0,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
self.in_channels = in_channels
|
142 |
+
self.out_channels = out_channels
|
143 |
+
self.hidden_channels = hidden_channels
|
144 |
+
self.kernel_size = kernel_size
|
145 |
+
self.dilation_rate = dilation_rate
|
146 |
+
self.n_layers = n_layers
|
147 |
+
self.gin_channels = gin_channels
|
148 |
+
|
149 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
150 |
+
self.enc = modules.WN(
|
151 |
+
hidden_channels,
|
152 |
+
kernel_size,
|
153 |
+
dilation_rate,
|
154 |
+
n_layers,
|
155 |
+
gin_channels=gin_channels,
|
156 |
+
)
|
157 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
158 |
+
|
159 |
+
def forward(self, x, x_lengths, g=None):
|
160 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
161 |
+
x.dtype
|
162 |
+
)
|
163 |
+
x = self.pre(x) * x_mask
|
164 |
+
x = self.enc(x, x_mask, g=g)
|
165 |
+
stats = self.proj(x) * x_mask
|
166 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
167 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
168 |
+
return z, m, logs, x_mask
|
169 |
+
|
170 |
+
def remove_weight_norm(self):
|
171 |
+
self.enc.remove_weight_norm()
|
172 |
+
class Generator(torch.nn.Module):
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
initial_channel,
|
176 |
+
resblock,
|
177 |
+
resblock_kernel_sizes,
|
178 |
+
resblock_dilation_sizes,
|
179 |
+
upsample_rates,
|
180 |
+
upsample_initial_channel,
|
181 |
+
upsample_kernel_sizes,
|
182 |
+
gin_channels=0,
|
183 |
+
):
|
184 |
+
super(Generator, self).__init__()
|
185 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
186 |
+
self.num_upsamples = len(upsample_rates)
|
187 |
+
self.conv_pre = Conv1d(
|
188 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
189 |
+
)
|
190 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
191 |
+
|
192 |
+
self.ups = nn.ModuleList()
|
193 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
194 |
+
self.ups.append(
|
195 |
+
weight_norm(
|
196 |
+
ConvTranspose1d(
|
197 |
+
upsample_initial_channel // (2**i),
|
198 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
199 |
+
k,
|
200 |
+
u,
|
201 |
+
padding=(k - u) // 2,
|
202 |
+
)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
|
206 |
+
self.resblocks = nn.ModuleList()
|
207 |
+
for i in range(len(self.ups)):
|
208 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
209 |
+
for j, (k, d) in enumerate(
|
210 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
211 |
+
):
|
212 |
+
self.resblocks.append(resblock(ch, k, d))
|
213 |
+
|
214 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
215 |
+
self.ups.apply(init_weights)
|
216 |
+
|
217 |
+
if gin_channels != 0:
|
218 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
219 |
+
|
220 |
+
def forward(self, x, g=None):
|
221 |
+
x = self.conv_pre(x)
|
222 |
+
if g is not None:
|
223 |
+
x = x + self.cond(g)
|
224 |
+
|
225 |
+
for i in range(self.num_upsamples):
|
226 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
227 |
+
x = self.ups[i](x)
|
228 |
+
xs = None
|
229 |
+
for j in range(self.num_kernels):
|
230 |
+
if xs is None:
|
231 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
232 |
+
else:
|
233 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
234 |
+
x = xs / self.num_kernels
|
235 |
+
x = F.leaky_relu(x)
|
236 |
+
x = self.conv_post(x)
|
237 |
+
x = torch.tanh(x)
|
238 |
+
|
239 |
+
return x
|
240 |
+
|
241 |
+
def remove_weight_norm(self):
|
242 |
+
for l in self.ups:
|
243 |
+
remove_weight_norm(l)
|
244 |
+
for l in self.resblocks:
|
245 |
+
l.remove_weight_norm()
|
246 |
+
class SineGen(torch.nn.Module):
|
247 |
+
""" Definition of sine generator
|
248 |
+
SineGen(samp_rate, harmonic_num = 0,
|
249 |
+
sine_amp = 0.1, noise_std = 0.003,
|
250 |
+
voiced_threshold = 0,
|
251 |
+
flag_for_pulse=False)
|
252 |
+
samp_rate: sampling rate in Hz
|
253 |
+
harmonic_num: number of harmonic overtones (default 0)
|
254 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
255 |
+
noise_std: std of Gaussian noise (default 0.003)
|
256 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
257 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
258 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
259 |
+
segment is always sin(np.pi) or cos(0)
|
260 |
+
"""
|
261 |
+
|
262 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
263 |
+
sine_amp=0.1, noise_std=0.003,
|
264 |
+
voiced_threshold=0,
|
265 |
+
flag_for_pulse=False):
|
266 |
+
super(SineGen, self).__init__()
|
267 |
+
self.sine_amp = sine_amp
|
268 |
+
self.noise_std = noise_std
|
269 |
+
self.harmonic_num = harmonic_num
|
270 |
+
self.dim = self.harmonic_num + 1
|
271 |
+
self.sampling_rate = samp_rate
|
272 |
+
self.voiced_threshold = voiced_threshold
|
273 |
+
|
274 |
+
def _f02uv(self, f0):
|
275 |
+
# generate uv signal
|
276 |
+
uv = torch.ones_like(f0)
|
277 |
+
uv = uv * (f0 > self.voiced_threshold)
|
278 |
+
return uv
|
279 |
+
|
280 |
+
def forward(self, f0,upp):
|
281 |
+
""" sine_tensor, uv = forward(f0)
|
282 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
283 |
+
f0 for unvoiced steps should be 0
|
284 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
285 |
+
output uv: tensor(batchsize=1, length, 1)
|
286 |
+
"""
|
287 |
+
with torch.no_grad():
|
288 |
+
f0 = f0[:, None].transpose(1, 2)
|
289 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
290 |
+
# fundamental component
|
291 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
292 |
+
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
293 |
+
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
294 |
+
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
295 |
+
rand_ini[:, 0] = 0
|
296 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
297 |
+
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
298 |
+
tmp_over_one*=upp
|
299 |
+
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
300 |
+
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
301 |
+
tmp_over_one%=1
|
302 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
303 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
304 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
305 |
+
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
306 |
+
sine_waves = sine_waves * self.sine_amp
|
307 |
+
uv = self._f02uv(f0)
|
308 |
+
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
309 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
310 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
311 |
+
sine_waves = sine_waves * uv + noise
|
312 |
+
return sine_waves, uv, noise
|
313 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
314 |
+
""" SourceModule for hn-nsf
|
315 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
316 |
+
add_noise_std=0.003, voiced_threshod=0)
|
317 |
+
sampling_rate: sampling_rate in Hz
|
318 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
319 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
320 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
321 |
+
note that amplitude of noise in unvoiced is decided
|
322 |
+
by sine_amp
|
323 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
324 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
325 |
+
F0_sampled (batchsize, length, 1)
|
326 |
+
Sine_source (batchsize, length, 1)
|
327 |
+
noise_source (batchsize, length 1)
|
328 |
+
uv (batchsize, length, 1)
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
332 |
+
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
333 |
+
super(SourceModuleHnNSF, self).__init__()
|
334 |
+
|
335 |
+
self.sine_amp = sine_amp
|
336 |
+
self.noise_std = add_noise_std
|
337 |
+
self.is_half=is_half
|
338 |
+
# to produce sine waveforms
|
339 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
340 |
+
sine_amp, add_noise_std, voiced_threshod)
|
341 |
+
|
342 |
+
# to merge source harmonics into a single excitation
|
343 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
344 |
+
self.l_tanh = torch.nn.Tanh()
|
345 |
+
|
346 |
+
def forward(self, x,upp=None):
|
347 |
+
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
348 |
+
if(self.is_half):sine_wavs=sine_wavs.half()
|
349 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
350 |
+
return sine_merge,None,None# noise, uv
|
351 |
+
class GeneratorNSF(torch.nn.Module):
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
initial_channel,
|
355 |
+
resblock,
|
356 |
+
resblock_kernel_sizes,
|
357 |
+
resblock_dilation_sizes,
|
358 |
+
upsample_rates,
|
359 |
+
upsample_initial_channel,
|
360 |
+
upsample_kernel_sizes,
|
361 |
+
gin_channels,
|
362 |
+
sr,
|
363 |
+
is_half=False
|
364 |
+
):
|
365 |
+
super(GeneratorNSF, self).__init__()
|
366 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
367 |
+
self.num_upsamples = len(upsample_rates)
|
368 |
+
|
369 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
370 |
+
self.m_source = SourceModuleHnNSF(
|
371 |
+
sampling_rate=sr,
|
372 |
+
harmonic_num=0,
|
373 |
+
is_half=is_half
|
374 |
+
)
|
375 |
+
self.noise_convs = nn.ModuleList()
|
376 |
+
self.conv_pre = Conv1d(
|
377 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
378 |
+
)
|
379 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
380 |
+
|
381 |
+
self.ups = nn.ModuleList()
|
382 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
383 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
384 |
+
self.ups.append(
|
385 |
+
weight_norm(
|
386 |
+
ConvTranspose1d(
|
387 |
+
upsample_initial_channel // (2**i),
|
388 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
389 |
+
k,
|
390 |
+
u,
|
391 |
+
padding=(k - u) // 2,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
)
|
395 |
+
if i + 1 < len(upsample_rates):
|
396 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
397 |
+
self.noise_convs.append(Conv1d(
|
398 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
399 |
+
else:
|
400 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
401 |
+
|
402 |
+
self.resblocks = nn.ModuleList()
|
403 |
+
for i in range(len(self.ups)):
|
404 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
405 |
+
for j, (k, d) in enumerate(
|
406 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
407 |
+
):
|
408 |
+
self.resblocks.append(resblock(ch, k, d))
|
409 |
+
|
410 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
411 |
+
self.ups.apply(init_weights)
|
412 |
+
|
413 |
+
if gin_channels != 0:
|
414 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
415 |
+
|
416 |
+
self.upp=np.prod(upsample_rates)
|
417 |
+
|
418 |
+
def forward(self, x, f0,g=None):
|
419 |
+
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
420 |
+
har_source = har_source.transpose(1, 2)
|
421 |
+
x = self.conv_pre(x)
|
422 |
+
if g is not None:
|
423 |
+
x = x + self.cond(g)
|
424 |
+
|
425 |
+
for i in range(self.num_upsamples):
|
426 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
427 |
+
x = self.ups[i](x)
|
428 |
+
x_source = self.noise_convs[i](har_source)
|
429 |
+
x = x + x_source
|
430 |
+
xs = None
|
431 |
+
for j in range(self.num_kernels):
|
432 |
+
if xs is None:
|
433 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
434 |
+
else:
|
435 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
436 |
+
x = xs / self.num_kernels
|
437 |
+
x = F.leaky_relu(x)
|
438 |
+
x = self.conv_post(x)
|
439 |
+
x = torch.tanh(x)
|
440 |
+
return x
|
441 |
+
|
442 |
+
def remove_weight_norm(self):
|
443 |
+
for l in self.ups:
|
444 |
+
remove_weight_norm(l)
|
445 |
+
for l in self.resblocks:
|
446 |
+
l.remove_weight_norm()
|
447 |
+
sr2sr={
|
448 |
+
"32k":32000,
|
449 |
+
"40k":40000,
|
450 |
+
"48k":48000,
|
451 |
+
}
|
452 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
453 |
+
def __init__(
|
454 |
+
self,
|
455 |
+
spec_channels,
|
456 |
+
segment_size,
|
457 |
+
inter_channels,
|
458 |
+
hidden_channels,
|
459 |
+
filter_channels,
|
460 |
+
n_heads,
|
461 |
+
n_layers,
|
462 |
+
kernel_size,
|
463 |
+
p_dropout,
|
464 |
+
resblock,
|
465 |
+
resblock_kernel_sizes,
|
466 |
+
resblock_dilation_sizes,
|
467 |
+
upsample_rates,
|
468 |
+
upsample_initial_channel,
|
469 |
+
upsample_kernel_sizes,
|
470 |
+
spk_embed_dim,
|
471 |
+
gin_channels,
|
472 |
+
sr,
|
473 |
+
**kwargs
|
474 |
+
):
|
475 |
+
|
476 |
+
super().__init__()
|
477 |
+
if(type(sr)==type("strr")):
|
478 |
+
sr=sr2sr[sr]
|
479 |
+
self.spec_channels = spec_channels
|
480 |
+
self.inter_channels = inter_channels
|
481 |
+
self.hidden_channels = hidden_channels
|
482 |
+
self.filter_channels = filter_channels
|
483 |
+
self.n_heads = n_heads
|
484 |
+
self.n_layers = n_layers
|
485 |
+
self.kernel_size = kernel_size
|
486 |
+
self.p_dropout = p_dropout
|
487 |
+
self.resblock = resblock
|
488 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
489 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
490 |
+
self.upsample_rates = upsample_rates
|
491 |
+
self.upsample_initial_channel = upsample_initial_channel
|
492 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
493 |
+
self.segment_size = segment_size
|
494 |
+
self.gin_channels = gin_channels
|
495 |
+
# self.hop_length = hop_length#
|
496 |
+
self.spk_embed_dim=spk_embed_dim
|
497 |
+
self.enc_p = TextEncoder256(
|
498 |
+
inter_channels,
|
499 |
+
hidden_channels,
|
500 |
+
filter_channels,
|
501 |
+
n_heads,
|
502 |
+
n_layers,
|
503 |
+
kernel_size,
|
504 |
+
p_dropout,
|
505 |
+
)
|
506 |
+
self.dec = GeneratorNSF(
|
507 |
+
inter_channels,
|
508 |
+
resblock,
|
509 |
+
resblock_kernel_sizes,
|
510 |
+
resblock_dilation_sizes,
|
511 |
+
upsample_rates,
|
512 |
+
upsample_initial_channel,
|
513 |
+
upsample_kernel_sizes,
|
514 |
+
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
515 |
+
)
|
516 |
+
self.enc_q = PosteriorEncoder(
|
517 |
+
spec_channels,
|
518 |
+
inter_channels,
|
519 |
+
hidden_channels,
|
520 |
+
5,
|
521 |
+
1,
|
522 |
+
16,
|
523 |
+
gin_channels=gin_channels,
|
524 |
+
)
|
525 |
+
self.flow = ResidualCouplingBlock(
|
526 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
527 |
+
)
|
528 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
529 |
+
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
530 |
+
def remove_weight_norm(self):
|
531 |
+
self.dec.remove_weight_norm()
|
532 |
+
self.flow.remove_weight_norm()
|
533 |
+
self.enc_q.remove_weight_norm()
|
534 |
+
|
535 |
+
def forward(self, phone, phone_lengths, pitch,pitchf, y, y_lengths,ds):#这里ds是id,[bs,1]
|
536 |
+
# print(1,pitch.shape)#[bs,t]
|
537 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
538 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
539 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
540 |
+
z_p = self.flow(z, y_mask, g=g)
|
541 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
542 |
+
z, y_lengths, self.segment_size
|
543 |
+
)
|
544 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
545 |
+
pitchf = commons.slice_segments2(
|
546 |
+
pitchf, ids_slice, self.segment_size
|
547 |
+
)
|
548 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
549 |
+
o = self.dec(z_slice,pitchf, g=g)
|
550 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
551 |
+
|
552 |
+
def infer(self, phone, phone_lengths, pitch, nsff0,sid,max_len=None):
|
553 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
554 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
555 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
556 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
557 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
558 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
559 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
560 |
+
def __init__(
|
561 |
+
self,
|
562 |
+
spec_channels,
|
563 |
+
segment_size,
|
564 |
+
inter_channels,
|
565 |
+
hidden_channels,
|
566 |
+
filter_channels,
|
567 |
+
n_heads,
|
568 |
+
n_layers,
|
569 |
+
kernel_size,
|
570 |
+
p_dropout,
|
571 |
+
resblock,
|
572 |
+
resblock_kernel_sizes,
|
573 |
+
resblock_dilation_sizes,
|
574 |
+
upsample_rates,
|
575 |
+
upsample_initial_channel,
|
576 |
+
upsample_kernel_sizes,
|
577 |
+
spk_embed_dim,
|
578 |
+
gin_channels,
|
579 |
+
sr=None,
|
580 |
+
**kwargs
|
581 |
+
):
|
582 |
+
|
583 |
+
super().__init__()
|
584 |
+
self.spec_channels = spec_channels
|
585 |
+
self.inter_channels = inter_channels
|
586 |
+
self.hidden_channels = hidden_channels
|
587 |
+
self.filter_channels = filter_channels
|
588 |
+
self.n_heads = n_heads
|
589 |
+
self.n_layers = n_layers
|
590 |
+
self.kernel_size = kernel_size
|
591 |
+
self.p_dropout = p_dropout
|
592 |
+
self.resblock = resblock
|
593 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
594 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
595 |
+
self.upsample_rates = upsample_rates
|
596 |
+
self.upsample_initial_channel = upsample_initial_channel
|
597 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
598 |
+
self.segment_size = segment_size
|
599 |
+
self.gin_channels = gin_channels
|
600 |
+
# self.hop_length = hop_length#
|
601 |
+
self.spk_embed_dim=spk_embed_dim
|
602 |
+
self.enc_p = TextEncoder256(
|
603 |
+
inter_channels,
|
604 |
+
hidden_channels,
|
605 |
+
filter_channels,
|
606 |
+
n_heads,
|
607 |
+
n_layers,
|
608 |
+
kernel_size,
|
609 |
+
p_dropout,f0=False
|
610 |
+
)
|
611 |
+
self.dec = Generator(
|
612 |
+
inter_channels,
|
613 |
+
resblock,
|
614 |
+
resblock_kernel_sizes,
|
615 |
+
resblock_dilation_sizes,
|
616 |
+
upsample_rates,
|
617 |
+
upsample_initial_channel,
|
618 |
+
upsample_kernel_sizes,
|
619 |
+
gin_channels=gin_channels
|
620 |
+
)
|
621 |
+
self.enc_q = PosteriorEncoder(
|
622 |
+
spec_channels,
|
623 |
+
inter_channels,
|
624 |
+
hidden_channels,
|
625 |
+
5,
|
626 |
+
1,
|
627 |
+
16,
|
628 |
+
gin_channels=gin_channels,
|
629 |
+
)
|
630 |
+
self.flow = ResidualCouplingBlock(
|
631 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
632 |
+
)
|
633 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
634 |
+
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
635 |
+
|
636 |
+
def remove_weight_norm(self):
|
637 |
+
self.dec.remove_weight_norm()
|
638 |
+
self.flow.remove_weight_norm()
|
639 |
+
self.enc_q.remove_weight_norm()
|
640 |
+
|
641 |
+
def forward(self, phone, phone_lengths, y, y_lengths,ds):#这里ds是id,[bs,1]
|
642 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
643 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
644 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
645 |
+
z_p = self.flow(z, y_mask, g=g)
|
646 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
647 |
+
z, y_lengths, self.segment_size
|
648 |
+
)
|
649 |
+
o = self.dec(z_slice, g=g)
|
650 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
651 |
+
|
652 |
+
def infer(self, phone, phone_lengths,sid,max_len=None):
|
653 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
654 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
655 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
656 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
657 |
+
o = self.dec((z * x_mask)[:, :, :max_len],g=g)
|
658 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
659 |
+
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
660 |
+
"""
|
661 |
+
Synthesizer for Training
|
662 |
+
"""
|
663 |
+
|
664 |
+
def __init__(
|
665 |
+
self,
|
666 |
+
spec_channels,
|
667 |
+
segment_size,
|
668 |
+
inter_channels,
|
669 |
+
hidden_channels,
|
670 |
+
filter_channels,
|
671 |
+
n_heads,
|
672 |
+
n_layers,
|
673 |
+
kernel_size,
|
674 |
+
p_dropout,
|
675 |
+
resblock,
|
676 |
+
resblock_kernel_sizes,
|
677 |
+
resblock_dilation_sizes,
|
678 |
+
upsample_rates,
|
679 |
+
upsample_initial_channel,
|
680 |
+
upsample_kernel_sizes,
|
681 |
+
spk_embed_dim,
|
682 |
+
# hop_length,
|
683 |
+
gin_channels=0,
|
684 |
+
use_sdp=True,
|
685 |
+
**kwargs
|
686 |
+
):
|
687 |
+
|
688 |
+
super().__init__()
|
689 |
+
self.spec_channels = spec_channels
|
690 |
+
self.inter_channels = inter_channels
|
691 |
+
self.hidden_channels = hidden_channels
|
692 |
+
self.filter_channels = filter_channels
|
693 |
+
self.n_heads = n_heads
|
694 |
+
self.n_layers = n_layers
|
695 |
+
self.kernel_size = kernel_size
|
696 |
+
self.p_dropout = p_dropout
|
697 |
+
self.resblock = resblock
|
698 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
699 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
700 |
+
self.upsample_rates = upsample_rates
|
701 |
+
self.upsample_initial_channel = upsample_initial_channel
|
702 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
703 |
+
self.segment_size = segment_size
|
704 |
+
self.gin_channels = gin_channels
|
705 |
+
# self.hop_length = hop_length#
|
706 |
+
self.spk_embed_dim=spk_embed_dim
|
707 |
+
self.enc_p = TextEncoder256Sim(
|
708 |
+
inter_channels,
|
709 |
+
hidden_channels,
|
710 |
+
filter_channels,
|
711 |
+
n_heads,
|
712 |
+
n_layers,
|
713 |
+
kernel_size,
|
714 |
+
p_dropout,
|
715 |
+
)
|
716 |
+
self.dec = GeneratorNSF(
|
717 |
+
inter_channels,
|
718 |
+
resblock,
|
719 |
+
resblock_kernel_sizes,
|
720 |
+
resblock_dilation_sizes,
|
721 |
+
upsample_rates,
|
722 |
+
upsample_initial_channel,
|
723 |
+
upsample_kernel_sizes,
|
724 |
+
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
725 |
+
)
|
726 |
+
|
727 |
+
self.flow = ResidualCouplingBlock(
|
728 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
729 |
+
)
|
730 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
731 |
+
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
732 |
+
def remove_weight_norm(self):
|
733 |
+
self.dec.remove_weight_norm()
|
734 |
+
self.flow.remove_weight_norm()
|
735 |
+
self.enc_q.remove_weight_norm()
|
736 |
+
|
737 |
+
def forward(self, phone, phone_lengths, pitch, pitchf, y_lengths,ds): # y是spec不需要了现在
|
738 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
739 |
+
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
740 |
+
x = self.flow(x, x_mask, g=g, reverse=True)
|
741 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
742 |
+
x, y_lengths, self.segment_size
|
743 |
+
)
|
744 |
+
|
745 |
+
pitchf = commons.slice_segments2(
|
746 |
+
pitchf, ids_slice, self.segment_size
|
747 |
+
)
|
748 |
+
o = self.dec(z_slice, pitchf, g=g)
|
749 |
+
return o, ids_slice
|
750 |
+
def infer(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
751 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
752 |
+
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
753 |
+
x = self.flow(x, x_mask, g=g, reverse=True)
|
754 |
+
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
755 |
+
return o, o
|
756 |
+
|
757 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
758 |
+
def __init__(self, use_spectral_norm=False):
|
759 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
760 |
+
periods = [2, 3, 5, 7, 11,17]
|
761 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
762 |
+
|
763 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
764 |
+
discs = discs + [
|
765 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
766 |
+
]
|
767 |
+
self.discriminators = nn.ModuleList(discs)
|
768 |
+
|
769 |
+
def forward(self, y, y_hat):
|
770 |
+
y_d_rs = []#
|
771 |
+
y_d_gs = []
|
772 |
+
fmap_rs = []
|
773 |
+
fmap_gs = []
|
774 |
+
for i, d in enumerate(self.discriminators):
|
775 |
+
y_d_r, fmap_r = d(y)
|
776 |
+
y_d_g, fmap_g = d(y_hat)
|
777 |
+
# for j in range(len(fmap_r)):
|
778 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
779 |
+
y_d_rs.append(y_d_r)
|
780 |
+
y_d_gs.append(y_d_g)
|
781 |
+
fmap_rs.append(fmap_r)
|
782 |
+
fmap_gs.append(fmap_g)
|
783 |
+
|
784 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
785 |
+
|
786 |
+
class DiscriminatorS(torch.nn.Module):
|
787 |
+
def __init__(self, use_spectral_norm=False):
|
788 |
+
super(DiscriminatorS, self).__init__()
|
789 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
790 |
+
self.convs = nn.ModuleList(
|
791 |
+
[
|
792 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
793 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
794 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
795 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
796 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
797 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
798 |
+
]
|
799 |
+
)
|
800 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
801 |
+
|
802 |
+
def forward(self, x):
|
803 |
+
fmap = []
|
804 |
+
|
805 |
+
for l in self.convs:
|
806 |
+
x = l(x)
|
807 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
808 |
+
fmap.append(x)
|
809 |
+
x = self.conv_post(x)
|
810 |
+
fmap.append(x)
|
811 |
+
x = torch.flatten(x, 1, -1)
|
812 |
+
|
813 |
+
return x, fmap
|
814 |
+
|
815 |
+
class DiscriminatorP(torch.nn.Module):
|
816 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
817 |
+
super(DiscriminatorP, self).__init__()
|
818 |
+
self.period = period
|
819 |
+
self.use_spectral_norm = use_spectral_norm
|
820 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
821 |
+
self.convs = nn.ModuleList(
|
822 |
+
[
|
823 |
+
norm_f(
|
824 |
+
Conv2d(
|
825 |
+
1,
|
826 |
+
32,
|
827 |
+
(kernel_size, 1),
|
828 |
+
(stride, 1),
|
829 |
+
padding=(get_padding(kernel_size, 1), 0),
|
830 |
+
)
|
831 |
+
),
|
832 |
+
norm_f(
|
833 |
+
Conv2d(
|
834 |
+
32,
|
835 |
+
128,
|
836 |
+
(kernel_size, 1),
|
837 |
+
(stride, 1),
|
838 |
+
padding=(get_padding(kernel_size, 1), 0),
|
839 |
+
)
|
840 |
+
),
|
841 |
+
norm_f(
|
842 |
+
Conv2d(
|
843 |
+
128,
|
844 |
+
512,
|
845 |
+
(kernel_size, 1),
|
846 |
+
(stride, 1),
|
847 |
+
padding=(get_padding(kernel_size, 1), 0),
|
848 |
+
)
|
849 |
+
),
|
850 |
+
norm_f(
|
851 |
+
Conv2d(
|
852 |
+
512,
|
853 |
+
1024,
|
854 |
+
(kernel_size, 1),
|
855 |
+
(stride, 1),
|
856 |
+
padding=(get_padding(kernel_size, 1), 0),
|
857 |
+
)
|
858 |
+
),
|
859 |
+
norm_f(
|
860 |
+
Conv2d(
|
861 |
+
1024,
|
862 |
+
1024,
|
863 |
+
(kernel_size, 1),
|
864 |
+
1,
|
865 |
+
padding=(get_padding(kernel_size, 1), 0),
|
866 |
+
)
|
867 |
+
),
|
868 |
+
]
|
869 |
+
)
|
870 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
871 |
+
|
872 |
+
def forward(self, x):
|
873 |
+
fmap = []
|
874 |
+
|
875 |
+
# 1d to 2d
|
876 |
+
b, c, t = x.shape
|
877 |
+
if t % self.period != 0: # pad first
|
878 |
+
n_pad = self.period - (t % self.period)
|
879 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
880 |
+
t = t + n_pad
|
881 |
+
x = x.view(b, c, t // self.period, self.period)
|
882 |
+
|
883 |
+
for l in self.convs:
|
884 |
+
x = l(x)
|
885 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
886 |
+
fmap.append(x)
|
887 |
+
x = self.conv_post(x)
|
888 |
+
fmap.append(x)
|
889 |
+
x = torch.flatten(x, 1, -1)
|
890 |
+
|
891 |
+
return x, fmap
|
892 |
+
|
infer_pack/models_onnx.py
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math,pdb,os
|
2 |
+
from time import time as ttime
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from infer_pack import modules
|
7 |
+
from infer_pack import attentions
|
8 |
+
from infer_pack import commons
|
9 |
+
from infer_pack.commons import init_weights, get_padding
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from infer_pack.commons import init_weights
|
13 |
+
import numpy as np
|
14 |
+
from infer_pack import commons
|
15 |
+
class TextEncoder256(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
18 |
+
super().__init__()
|
19 |
+
self.out_channels = out_channels
|
20 |
+
self.hidden_channels = hidden_channels
|
21 |
+
self.filter_channels = filter_channels
|
22 |
+
self.n_heads = n_heads
|
23 |
+
self.n_layers = n_layers
|
24 |
+
self.kernel_size = kernel_size
|
25 |
+
self.p_dropout = p_dropout
|
26 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
27 |
+
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
28 |
+
if(f0==True):
|
29 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
30 |
+
self.encoder = attentions.Encoder(
|
31 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
32 |
+
)
|
33 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
34 |
+
|
35 |
+
def forward(self, phone, pitch, lengths):
|
36 |
+
if(pitch==None):
|
37 |
+
x = self.emb_phone(phone)
|
38 |
+
else:
|
39 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
40 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
41 |
+
x=self.lrelu(x)
|
42 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
43 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
44 |
+
x.dtype
|
45 |
+
)
|
46 |
+
x = self.encoder(x * x_mask, x_mask)
|
47 |
+
stats = self.proj(x) * x_mask
|
48 |
+
|
49 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
50 |
+
return m, logs, x_mask
|
51 |
+
class TextEncoder256Sim(nn.Module):
|
52 |
+
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
53 |
+
super().__init__()
|
54 |
+
self.out_channels = out_channels
|
55 |
+
self.hidden_channels = hidden_channels
|
56 |
+
self.filter_channels = filter_channels
|
57 |
+
self.n_heads = n_heads
|
58 |
+
self.n_layers = n_layers
|
59 |
+
self.kernel_size = kernel_size
|
60 |
+
self.p_dropout = p_dropout
|
61 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
62 |
+
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
63 |
+
if(f0==True):
|
64 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
65 |
+
self.encoder = attentions.Encoder(
|
66 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
67 |
+
)
|
68 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
69 |
+
|
70 |
+
def forward(self, phone, pitch, lengths):
|
71 |
+
if(pitch==None):
|
72 |
+
x = self.emb_phone(phone)
|
73 |
+
else:
|
74 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
75 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
76 |
+
x=self.lrelu(x)
|
77 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
78 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
79 |
+
x = self.encoder(x * x_mask, x_mask)
|
80 |
+
x = self.proj(x) * x_mask
|
81 |
+
return x,x_mask
|
82 |
+
class ResidualCouplingBlock(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
channels,
|
86 |
+
hidden_channels,
|
87 |
+
kernel_size,
|
88 |
+
dilation_rate,
|
89 |
+
n_layers,
|
90 |
+
n_flows=4,
|
91 |
+
gin_channels=0,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.channels = channels
|
95 |
+
self.hidden_channels = hidden_channels
|
96 |
+
self.kernel_size = kernel_size
|
97 |
+
self.dilation_rate = dilation_rate
|
98 |
+
self.n_layers = n_layers
|
99 |
+
self.n_flows = n_flows
|
100 |
+
self.gin_channels = gin_channels
|
101 |
+
|
102 |
+
self.flows = nn.ModuleList()
|
103 |
+
for i in range(n_flows):
|
104 |
+
self.flows.append(
|
105 |
+
modules.ResidualCouplingLayer(
|
106 |
+
channels,
|
107 |
+
hidden_channels,
|
108 |
+
kernel_size,
|
109 |
+
dilation_rate,
|
110 |
+
n_layers,
|
111 |
+
gin_channels=gin_channels,
|
112 |
+
mean_only=True,
|
113 |
+
)
|
114 |
+
)
|
115 |
+
self.flows.append(modules.Flip())
|
116 |
+
|
117 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
118 |
+
if not reverse:
|
119 |
+
for flow in self.flows:
|
120 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
121 |
+
else:
|
122 |
+
for flow in reversed(self.flows):
|
123 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
124 |
+
return x
|
125 |
+
|
126 |
+
def remove_weight_norm(self):
|
127 |
+
for i in range(self.n_flows):
|
128 |
+
self.flows[i * 2].remove_weight_norm()
|
129 |
+
class PosteriorEncoder(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
in_channels,
|
133 |
+
out_channels,
|
134 |
+
hidden_channels,
|
135 |
+
kernel_size,
|
136 |
+
dilation_rate,
|
137 |
+
n_layers,
|
138 |
+
gin_channels=0,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
self.in_channels = in_channels
|
142 |
+
self.out_channels = out_channels
|
143 |
+
self.hidden_channels = hidden_channels
|
144 |
+
self.kernel_size = kernel_size
|
145 |
+
self.dilation_rate = dilation_rate
|
146 |
+
self.n_layers = n_layers
|
147 |
+
self.gin_channels = gin_channels
|
148 |
+
|
149 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
150 |
+
self.enc = modules.WN(
|
151 |
+
hidden_channels,
|
152 |
+
kernel_size,
|
153 |
+
dilation_rate,
|
154 |
+
n_layers,
|
155 |
+
gin_channels=gin_channels,
|
156 |
+
)
|
157 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
158 |
+
|
159 |
+
def forward(self, x, x_lengths, g=None):
|
160 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
161 |
+
x.dtype
|
162 |
+
)
|
163 |
+
x = self.pre(x) * x_mask
|
164 |
+
x = self.enc(x, x_mask, g=g)
|
165 |
+
stats = self.proj(x) * x_mask
|
166 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
167 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
168 |
+
return z, m, logs, x_mask
|
169 |
+
|
170 |
+
def remove_weight_norm(self):
|
171 |
+
self.enc.remove_weight_norm()
|
172 |
+
class Generator(torch.nn.Module):
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
initial_channel,
|
176 |
+
resblock,
|
177 |
+
resblock_kernel_sizes,
|
178 |
+
resblock_dilation_sizes,
|
179 |
+
upsample_rates,
|
180 |
+
upsample_initial_channel,
|
181 |
+
upsample_kernel_sizes,
|
182 |
+
gin_channels=0,
|
183 |
+
):
|
184 |
+
super(Generator, self).__init__()
|
185 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
186 |
+
self.num_upsamples = len(upsample_rates)
|
187 |
+
self.conv_pre = Conv1d(
|
188 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
189 |
+
)
|
190 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
191 |
+
|
192 |
+
self.ups = nn.ModuleList()
|
193 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
194 |
+
self.ups.append(
|
195 |
+
weight_norm(
|
196 |
+
ConvTranspose1d(
|
197 |
+
upsample_initial_channel // (2**i),
|
198 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
199 |
+
k,
|
200 |
+
u,
|
201 |
+
padding=(k - u) // 2,
|
202 |
+
)
|
203 |
+
)
|
204 |
+
)
|
205 |
+
|
206 |
+
self.resblocks = nn.ModuleList()
|
207 |
+
for i in range(len(self.ups)):
|
208 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
209 |
+
for j, (k, d) in enumerate(
|
210 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
211 |
+
):
|
212 |
+
self.resblocks.append(resblock(ch, k, d))
|
213 |
+
|
214 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
215 |
+
self.ups.apply(init_weights)
|
216 |
+
|
217 |
+
if gin_channels != 0:
|
218 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
219 |
+
|
220 |
+
def forward(self, x, g=None):
|
221 |
+
x = self.conv_pre(x)
|
222 |
+
if g is not None:
|
223 |
+
x = x + self.cond(g)
|
224 |
+
|
225 |
+
for i in range(self.num_upsamples):
|
226 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
227 |
+
x = self.ups[i](x)
|
228 |
+
xs = None
|
229 |
+
for j in range(self.num_kernels):
|
230 |
+
if xs is None:
|
231 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
232 |
+
else:
|
233 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
234 |
+
x = xs / self.num_kernels
|
235 |
+
x = F.leaky_relu(x)
|
236 |
+
x = self.conv_post(x)
|
237 |
+
x = torch.tanh(x)
|
238 |
+
|
239 |
+
return x
|
240 |
+
|
241 |
+
def remove_weight_norm(self):
|
242 |
+
for l in self.ups:
|
243 |
+
remove_weight_norm(l)
|
244 |
+
for l in self.resblocks:
|
245 |
+
l.remove_weight_norm()
|
246 |
+
class SineGen(torch.nn.Module):
|
247 |
+
""" Definition of sine generator
|
248 |
+
SineGen(samp_rate, harmonic_num = 0,
|
249 |
+
sine_amp = 0.1, noise_std = 0.003,
|
250 |
+
voiced_threshold = 0,
|
251 |
+
flag_for_pulse=False)
|
252 |
+
samp_rate: sampling rate in Hz
|
253 |
+
harmonic_num: number of harmonic overtones (default 0)
|
254 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
255 |
+
noise_std: std of Gaussian noise (default 0.003)
|
256 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
257 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
258 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
259 |
+
segment is always sin(np.pi) or cos(0)
|
260 |
+
"""
|
261 |
+
|
262 |
+
def __init__(self, samp_rate, harmonic_num=0,
|
263 |
+
sine_amp=0.1, noise_std=0.003,
|
264 |
+
voiced_threshold=0,
|
265 |
+
flag_for_pulse=False):
|
266 |
+
super(SineGen, self).__init__()
|
267 |
+
self.sine_amp = sine_amp
|
268 |
+
self.noise_std = noise_std
|
269 |
+
self.harmonic_num = harmonic_num
|
270 |
+
self.dim = self.harmonic_num + 1
|
271 |
+
self.sampling_rate = samp_rate
|
272 |
+
self.voiced_threshold = voiced_threshold
|
273 |
+
|
274 |
+
def _f02uv(self, f0):
|
275 |
+
# generate uv signal
|
276 |
+
uv = torch.ones_like(f0)
|
277 |
+
uv = uv * (f0 > self.voiced_threshold)
|
278 |
+
return uv
|
279 |
+
|
280 |
+
def forward(self, f0,upp):
|
281 |
+
""" sine_tensor, uv = forward(f0)
|
282 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
283 |
+
f0 for unvoiced steps should be 0
|
284 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
285 |
+
output uv: tensor(batchsize=1, length, 1)
|
286 |
+
"""
|
287 |
+
with torch.no_grad():
|
288 |
+
f0 = f0[:, None].transpose(1, 2)
|
289 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
290 |
+
# fundamental component
|
291 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
292 |
+
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
293 |
+
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
294 |
+
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
295 |
+
rand_ini[:, 0] = 0
|
296 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
297 |
+
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
298 |
+
tmp_over_one*=upp
|
299 |
+
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
300 |
+
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
301 |
+
tmp_over_one%=1
|
302 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
303 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
304 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
305 |
+
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
306 |
+
sine_waves = sine_waves * self.sine_amp
|
307 |
+
uv = self._f02uv(f0)
|
308 |
+
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
309 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
310 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
311 |
+
sine_waves = sine_waves * uv + noise
|
312 |
+
return sine_waves, uv, noise
|
313 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
314 |
+
""" SourceModule for hn-nsf
|
315 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
316 |
+
add_noise_std=0.003, voiced_threshod=0)
|
317 |
+
sampling_rate: sampling_rate in Hz
|
318 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
319 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
320 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
321 |
+
note that amplitude of noise in unvoiced is decided
|
322 |
+
by sine_amp
|
323 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
324 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
325 |
+
F0_sampled (batchsize, length, 1)
|
326 |
+
Sine_source (batchsize, length, 1)
|
327 |
+
noise_source (batchsize, length 1)
|
328 |
+
uv (batchsize, length, 1)
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
332 |
+
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
333 |
+
super(SourceModuleHnNSF, self).__init__()
|
334 |
+
|
335 |
+
self.sine_amp = sine_amp
|
336 |
+
self.noise_std = add_noise_std
|
337 |
+
self.is_half=is_half
|
338 |
+
# to produce sine waveforms
|
339 |
+
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
340 |
+
sine_amp, add_noise_std, voiced_threshod)
|
341 |
+
|
342 |
+
# to merge source harmonics into a single excitation
|
343 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
344 |
+
self.l_tanh = torch.nn.Tanh()
|
345 |
+
|
346 |
+
def forward(self, x,upp=None):
|
347 |
+
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
348 |
+
if(self.is_half):sine_wavs=sine_wavs.half()
|
349 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
350 |
+
return sine_merge,None,None# noise, uv
|
351 |
+
class GeneratorNSF(torch.nn.Module):
|
352 |
+
def __init__(
|
353 |
+
self,
|
354 |
+
initial_channel,
|
355 |
+
resblock,
|
356 |
+
resblock_kernel_sizes,
|
357 |
+
resblock_dilation_sizes,
|
358 |
+
upsample_rates,
|
359 |
+
upsample_initial_channel,
|
360 |
+
upsample_kernel_sizes,
|
361 |
+
gin_channels,
|
362 |
+
sr,
|
363 |
+
is_half=False
|
364 |
+
):
|
365 |
+
super(GeneratorNSF, self).__init__()
|
366 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
367 |
+
self.num_upsamples = len(upsample_rates)
|
368 |
+
|
369 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
370 |
+
self.m_source = SourceModuleHnNSF(
|
371 |
+
sampling_rate=sr,
|
372 |
+
harmonic_num=0,
|
373 |
+
is_half=is_half
|
374 |
+
)
|
375 |
+
self.noise_convs = nn.ModuleList()
|
376 |
+
self.conv_pre = Conv1d(
|
377 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
378 |
+
)
|
379 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
380 |
+
|
381 |
+
self.ups = nn.ModuleList()
|
382 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
383 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
384 |
+
self.ups.append(
|
385 |
+
weight_norm(
|
386 |
+
ConvTranspose1d(
|
387 |
+
upsample_initial_channel // (2**i),
|
388 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
389 |
+
k,
|
390 |
+
u,
|
391 |
+
padding=(k - u) // 2,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
)
|
395 |
+
if i + 1 < len(upsample_rates):
|
396 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
397 |
+
self.noise_convs.append(Conv1d(
|
398 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
399 |
+
else:
|
400 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
401 |
+
|
402 |
+
self.resblocks = nn.ModuleList()
|
403 |
+
for i in range(len(self.ups)):
|
404 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
405 |
+
for j, (k, d) in enumerate(
|
406 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
407 |
+
):
|
408 |
+
self.resblocks.append(resblock(ch, k, d))
|
409 |
+
|
410 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
411 |
+
self.ups.apply(init_weights)
|
412 |
+
|
413 |
+
if gin_channels != 0:
|
414 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
415 |
+
|
416 |
+
self.upp=np.prod(upsample_rates)
|
417 |
+
|
418 |
+
def forward(self, x, f0,g=None):
|
419 |
+
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
420 |
+
har_source = har_source.transpose(1, 2)
|
421 |
+
x = self.conv_pre(x)
|
422 |
+
if g is not None:
|
423 |
+
x = x + self.cond(g)
|
424 |
+
|
425 |
+
for i in range(self.num_upsamples):
|
426 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
427 |
+
x = self.ups[i](x)
|
428 |
+
x_source = self.noise_convs[i](har_source)
|
429 |
+
x = x + x_source
|
430 |
+
xs = None
|
431 |
+
for j in range(self.num_kernels):
|
432 |
+
if xs is None:
|
433 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
434 |
+
else:
|
435 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
436 |
+
x = xs / self.num_kernels
|
437 |
+
x = F.leaky_relu(x)
|
438 |
+
x = self.conv_post(x)
|
439 |
+
x = torch.tanh(x)
|
440 |
+
return x
|
441 |
+
|
442 |
+
def remove_weight_norm(self):
|
443 |
+
for l in self.ups:
|
444 |
+
remove_weight_norm(l)
|
445 |
+
for l in self.resblocks:
|
446 |
+
l.remove_weight_norm()
|
447 |
+
sr2sr={
|
448 |
+
"32k":32000,
|
449 |
+
"40k":40000,
|
450 |
+
"48k":48000,
|
451 |
+
}
|
452 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
453 |
+
def __init__(
|
454 |
+
self,
|
455 |
+
spec_channels,
|
456 |
+
segment_size,
|
457 |
+
inter_channels,
|
458 |
+
hidden_channels,
|
459 |
+
filter_channels,
|
460 |
+
n_heads,
|
461 |
+
n_layers,
|
462 |
+
kernel_size,
|
463 |
+
p_dropout,
|
464 |
+
resblock,
|
465 |
+
resblock_kernel_sizes,
|
466 |
+
resblock_dilation_sizes,
|
467 |
+
upsample_rates,
|
468 |
+
upsample_initial_channel,
|
469 |
+
upsample_kernel_sizes,
|
470 |
+
spk_embed_dim,
|
471 |
+
gin_channels,
|
472 |
+
sr,
|
473 |
+
**kwargs
|
474 |
+
):
|
475 |
+
|
476 |
+
super().__init__()
|
477 |
+
if(type(sr)==type("strr")):
|
478 |
+
sr=sr2sr[sr]
|
479 |
+
self.spec_channels = spec_channels
|
480 |
+
self.inter_channels = inter_channels
|
481 |
+
self.hidden_channels = hidden_channels
|
482 |
+
self.filter_channels = filter_channels
|
483 |
+
self.n_heads = n_heads
|
484 |
+
self.n_layers = n_layers
|
485 |
+
self.kernel_size = kernel_size
|
486 |
+
self.p_dropout = p_dropout
|
487 |
+
self.resblock = resblock
|
488 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
489 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
490 |
+
self.upsample_rates = upsample_rates
|
491 |
+
self.upsample_initial_channel = upsample_initial_channel
|
492 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
493 |
+
self.segment_size = segment_size
|
494 |
+
self.gin_channels = gin_channels
|
495 |
+
# self.hop_length = hop_length#
|
496 |
+
self.spk_embed_dim=spk_embed_dim
|
497 |
+
self.enc_p = TextEncoder256(
|
498 |
+
inter_channels,
|
499 |
+
hidden_channels,
|
500 |
+
filter_channels,
|
501 |
+
n_heads,
|
502 |
+
n_layers,
|
503 |
+
kernel_size,
|
504 |
+
p_dropout,
|
505 |
+
)
|
506 |
+
self.dec = GeneratorNSF(
|
507 |
+
inter_channels,
|
508 |
+
resblock,
|
509 |
+
resblock_kernel_sizes,
|
510 |
+
resblock_dilation_sizes,
|
511 |
+
upsample_rates,
|
512 |
+
upsample_initial_channel,
|
513 |
+
upsample_kernel_sizes,
|
514 |
+
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
515 |
+
)
|
516 |
+
self.enc_q = PosteriorEncoder(
|
517 |
+
spec_channels,
|
518 |
+
inter_channels,
|
519 |
+
hidden_channels,
|
520 |
+
5,
|
521 |
+
1,
|
522 |
+
16,
|
523 |
+
gin_channels=gin_channels,
|
524 |
+
)
|
525 |
+
self.flow = ResidualCouplingBlock(
|
526 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
527 |
+
)
|
528 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
529 |
+
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
530 |
+
def remove_weight_norm(self):
|
531 |
+
self.dec.remove_weight_norm()
|
532 |
+
self.flow.remove_weight_norm()
|
533 |
+
self.enc_q.remove_weight_norm()
|
534 |
+
|
535 |
+
def forward(self, phone, phone_lengths, pitch, nsff0 ,sid, rnd, max_len=None):
|
536 |
+
|
537 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
538 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
539 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
540 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
541 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
542 |
+
return o
|
543 |
+
|
544 |
+
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
545 |
+
"""
|
546 |
+
Synthesizer for Training
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
spec_channels,
|
552 |
+
segment_size,
|
553 |
+
inter_channels,
|
554 |
+
hidden_channels,
|
555 |
+
filter_channels,
|
556 |
+
n_heads,
|
557 |
+
n_layers,
|
558 |
+
kernel_size,
|
559 |
+
p_dropout,
|
560 |
+
resblock,
|
561 |
+
resblock_kernel_sizes,
|
562 |
+
resblock_dilation_sizes,
|
563 |
+
upsample_rates,
|
564 |
+
upsample_initial_channel,
|
565 |
+
upsample_kernel_sizes,
|
566 |
+
spk_embed_dim,
|
567 |
+
# hop_length,
|
568 |
+
gin_channels=0,
|
569 |
+
use_sdp=True,
|
570 |
+
**kwargs
|
571 |
+
):
|
572 |
+
|
573 |
+
super().__init__()
|
574 |
+
self.spec_channels = spec_channels
|
575 |
+
self.inter_channels = inter_channels
|
576 |
+
self.hidden_channels = hidden_channels
|
577 |
+
self.filter_channels = filter_channels
|
578 |
+
self.n_heads = n_heads
|
579 |
+
self.n_layers = n_layers
|
580 |
+
self.kernel_size = kernel_size
|
581 |
+
self.p_dropout = p_dropout
|
582 |
+
self.resblock = resblock
|
583 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
584 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
585 |
+
self.upsample_rates = upsample_rates
|
586 |
+
self.upsample_initial_channel = upsample_initial_channel
|
587 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
588 |
+
self.segment_size = segment_size
|
589 |
+
self.gin_channels = gin_channels
|
590 |
+
# self.hop_length = hop_length#
|
591 |
+
self.spk_embed_dim=spk_embed_dim
|
592 |
+
self.enc_p = TextEncoder256Sim(
|
593 |
+
inter_channels,
|
594 |
+
hidden_channels,
|
595 |
+
filter_channels,
|
596 |
+
n_heads,
|
597 |
+
n_layers,
|
598 |
+
kernel_size,
|
599 |
+
p_dropout,
|
600 |
+
)
|
601 |
+
self.dec = GeneratorNSF(
|
602 |
+
inter_channels,
|
603 |
+
resblock,
|
604 |
+
resblock_kernel_sizes,
|
605 |
+
resblock_dilation_sizes,
|
606 |
+
upsample_rates,
|
607 |
+
upsample_initial_channel,
|
608 |
+
upsample_kernel_sizes,
|
609 |
+
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
610 |
+
)
|
611 |
+
|
612 |
+
self.flow = ResidualCouplingBlock(
|
613 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
614 |
+
)
|
615 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
616 |
+
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
617 |
+
def remove_weight_norm(self):
|
618 |
+
self.dec.remove_weight_norm()
|
619 |
+
self.flow.remove_weight_norm()
|
620 |
+
self.enc_q.remove_weight_norm()
|
621 |
+
|
622 |
+
def forward(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
623 |
+
g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
624 |
+
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
625 |
+
x = self.flow(x, x_mask, g=g, reverse=True)
|
626 |
+
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
627 |
+
return o
|
628 |
+
|
629 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
630 |
+
def __init__(self, use_spectral_norm=False):
|
631 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
632 |
+
periods = [2, 3, 5, 7, 11,17]
|
633 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
634 |
+
|
635 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
636 |
+
discs = discs + [
|
637 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
638 |
+
]
|
639 |
+
self.discriminators = nn.ModuleList(discs)
|
640 |
+
|
641 |
+
def forward(self, y, y_hat):
|
642 |
+
y_d_rs = []#
|
643 |
+
y_d_gs = []
|
644 |
+
fmap_rs = []
|
645 |
+
fmap_gs = []
|
646 |
+
for i, d in enumerate(self.discriminators):
|
647 |
+
y_d_r, fmap_r = d(y)
|
648 |
+
y_d_g, fmap_g = d(y_hat)
|
649 |
+
# for j in range(len(fmap_r)):
|
650 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
651 |
+
y_d_rs.append(y_d_r)
|
652 |
+
y_d_gs.append(y_d_g)
|
653 |
+
fmap_rs.append(fmap_r)
|
654 |
+
fmap_gs.append(fmap_g)
|
655 |
+
|
656 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
657 |
+
|
658 |
+
class DiscriminatorS(torch.nn.Module):
|
659 |
+
def __init__(self, use_spectral_norm=False):
|
660 |
+
super(DiscriminatorS, self).__init__()
|
661 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
662 |
+
self.convs = nn.ModuleList(
|
663 |
+
[
|
664 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
665 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
666 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
667 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
668 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
669 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
670 |
+
]
|
671 |
+
)
|
672 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
673 |
+
|
674 |
+
def forward(self, x):
|
675 |
+
fmap = []
|
676 |
+
|
677 |
+
for l in self.convs:
|
678 |
+
x = l(x)
|
679 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
680 |
+
fmap.append(x)
|
681 |
+
x = self.conv_post(x)
|
682 |
+
fmap.append(x)
|
683 |
+
x = torch.flatten(x, 1, -1)
|
684 |
+
|
685 |
+
return x, fmap
|
686 |
+
|
687 |
+
class DiscriminatorP(torch.nn.Module):
|
688 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
689 |
+
super(DiscriminatorP, self).__init__()
|
690 |
+
self.period = period
|
691 |
+
self.use_spectral_norm = use_spectral_norm
|
692 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
693 |
+
self.convs = nn.ModuleList(
|
694 |
+
[
|
695 |
+
norm_f(
|
696 |
+
Conv2d(
|
697 |
+
1,
|
698 |
+
32,
|
699 |
+
(kernel_size, 1),
|
700 |
+
(stride, 1),
|
701 |
+
padding=(get_padding(kernel_size, 1), 0),
|
702 |
+
)
|
703 |
+
),
|
704 |
+
norm_f(
|
705 |
+
Conv2d(
|
706 |
+
32,
|
707 |
+
128,
|
708 |
+
(kernel_size, 1),
|
709 |
+
(stride, 1),
|
710 |
+
padding=(get_padding(kernel_size, 1), 0),
|
711 |
+
)
|
712 |
+
),
|
713 |
+
norm_f(
|
714 |
+
Conv2d(
|
715 |
+
128,
|
716 |
+
512,
|
717 |
+
(kernel_size, 1),
|
718 |
+
(stride, 1),
|
719 |
+
padding=(get_padding(kernel_size, 1), 0),
|
720 |
+
)
|
721 |
+
),
|
722 |
+
norm_f(
|
723 |
+
Conv2d(
|
724 |
+
512,
|
725 |
+
1024,
|
726 |
+
(kernel_size, 1),
|
727 |
+
(stride, 1),
|
728 |
+
padding=(get_padding(kernel_size, 1), 0),
|
729 |
+
)
|
730 |
+
),
|
731 |
+
norm_f(
|
732 |
+
Conv2d(
|
733 |
+
1024,
|
734 |
+
1024,
|
735 |
+
(kernel_size, 1),
|
736 |
+
1,
|
737 |
+
padding=(get_padding(kernel_size, 1), 0),
|
738 |
+
)
|
739 |
+
),
|
740 |
+
]
|
741 |
+
)
|
742 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
743 |
+
|
744 |
+
def forward(self, x):
|
745 |
+
fmap = []
|
746 |
+
|
747 |
+
# 1d to 2d
|
748 |
+
b, c, t = x.shape
|
749 |
+
if t % self.period != 0: # pad first
|
750 |
+
n_pad = self.period - (t % self.period)
|
751 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
752 |
+
t = t + n_pad
|
753 |
+
x = x.view(b, c, t // self.period, self.period)
|
754 |
+
|
755 |
+
for l in self.convs:
|
756 |
+
x = l(x)
|
757 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
758 |
+
fmap.append(x)
|
759 |
+
x = self.conv_post(x)
|
760 |
+
fmap.append(x)
|
761 |
+
x = torch.flatten(x, 1, -1)
|
762 |
+
|
763 |
+
return x, fmap
|
764 |
+
|
infer_pack/modules.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
from infer_pack import commons
|
13 |
+
from infer_pack.commons import init_weights, get_padding
|
14 |
+
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
in_channels,
|
39 |
+
hidden_channels,
|
40 |
+
out_channels,
|
41 |
+
kernel_size,
|
42 |
+
n_layers,
|
43 |
+
p_dropout,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.in_channels = in_channels
|
47 |
+
self.hidden_channels = hidden_channels
|
48 |
+
self.out_channels = out_channels
|
49 |
+
self.kernel_size = kernel_size
|
50 |
+
self.n_layers = n_layers
|
51 |
+
self.p_dropout = p_dropout
|
52 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
53 |
+
|
54 |
+
self.conv_layers = nn.ModuleList()
|
55 |
+
self.norm_layers = nn.ModuleList()
|
56 |
+
self.conv_layers.append(
|
57 |
+
nn.Conv1d(
|
58 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
59 |
+
)
|
60 |
+
)
|
61 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
62 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
63 |
+
for _ in range(n_layers - 1):
|
64 |
+
self.conv_layers.append(
|
65 |
+
nn.Conv1d(
|
66 |
+
hidden_channels,
|
67 |
+
hidden_channels,
|
68 |
+
kernel_size,
|
69 |
+
padding=kernel_size // 2,
|
70 |
+
)
|
71 |
+
)
|
72 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
74 |
+
self.proj.weight.data.zero_()
|
75 |
+
self.proj.bias.data.zero_()
|
76 |
+
|
77 |
+
def forward(self, x, x_mask):
|
78 |
+
x_org = x
|
79 |
+
for i in range(self.n_layers):
|
80 |
+
x = self.conv_layers[i](x * x_mask)
|
81 |
+
x = self.norm_layers[i](x)
|
82 |
+
x = self.relu_drop(x)
|
83 |
+
x = x_org + self.proj(x)
|
84 |
+
return x * x_mask
|
85 |
+
|
86 |
+
|
87 |
+
class DDSConv(nn.Module):
|
88 |
+
"""
|
89 |
+
Dialted and Depth-Separable Convolution
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
93 |
+
super().__init__()
|
94 |
+
self.channels = channels
|
95 |
+
self.kernel_size = kernel_size
|
96 |
+
self.n_layers = n_layers
|
97 |
+
self.p_dropout = p_dropout
|
98 |
+
|
99 |
+
self.drop = nn.Dropout(p_dropout)
|
100 |
+
self.convs_sep = nn.ModuleList()
|
101 |
+
self.convs_1x1 = nn.ModuleList()
|
102 |
+
self.norms_1 = nn.ModuleList()
|
103 |
+
self.norms_2 = nn.ModuleList()
|
104 |
+
for i in range(n_layers):
|
105 |
+
dilation = kernel_size**i
|
106 |
+
padding = (kernel_size * dilation - dilation) // 2
|
107 |
+
self.convs_sep.append(
|
108 |
+
nn.Conv1d(
|
109 |
+
channels,
|
110 |
+
channels,
|
111 |
+
kernel_size,
|
112 |
+
groups=channels,
|
113 |
+
dilation=dilation,
|
114 |
+
padding=padding,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
118 |
+
self.norms_1.append(LayerNorm(channels))
|
119 |
+
self.norms_2.append(LayerNorm(channels))
|
120 |
+
|
121 |
+
def forward(self, x, x_mask, g=None):
|
122 |
+
if g is not None:
|
123 |
+
x = x + g
|
124 |
+
for i in range(self.n_layers):
|
125 |
+
y = self.convs_sep[i](x * x_mask)
|
126 |
+
y = self.norms_1[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.convs_1x1[i](y)
|
129 |
+
y = self.norms_2[i](y)
|
130 |
+
y = F.gelu(y)
|
131 |
+
y = self.drop(y)
|
132 |
+
x = x + y
|
133 |
+
return x * x_mask
|
134 |
+
|
135 |
+
|
136 |
+
class WN(torch.nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
hidden_channels,
|
140 |
+
kernel_size,
|
141 |
+
dilation_rate,
|
142 |
+
n_layers,
|
143 |
+
gin_channels=0,
|
144 |
+
p_dropout=0,
|
145 |
+
):
|
146 |
+
super(WN, self).__init__()
|
147 |
+
assert kernel_size % 2 == 1
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.kernel_size = (kernel_size,)
|
150 |
+
self.dilation_rate = dilation_rate
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.gin_channels = gin_channels
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.in_layers = torch.nn.ModuleList()
|
156 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
157 |
+
self.drop = nn.Dropout(p_dropout)
|
158 |
+
|
159 |
+
if gin_channels != 0:
|
160 |
+
cond_layer = torch.nn.Conv1d(
|
161 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
162 |
+
)
|
163 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
164 |
+
|
165 |
+
for i in range(n_layers):
|
166 |
+
dilation = dilation_rate**i
|
167 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
168 |
+
in_layer = torch.nn.Conv1d(
|
169 |
+
hidden_channels,
|
170 |
+
2 * hidden_channels,
|
171 |
+
kernel_size,
|
172 |
+
dilation=dilation,
|
173 |
+
padding=padding,
|
174 |
+
)
|
175 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
176 |
+
self.in_layers.append(in_layer)
|
177 |
+
|
178 |
+
# last one is not necessary
|
179 |
+
if i < n_layers - 1:
|
180 |
+
res_skip_channels = 2 * hidden_channels
|
181 |
+
else:
|
182 |
+
res_skip_channels = hidden_channels
|
183 |
+
|
184 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
185 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
186 |
+
self.res_skip_layers.append(res_skip_layer)
|
187 |
+
|
188 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
189 |
+
output = torch.zeros_like(x)
|
190 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
191 |
+
|
192 |
+
if g is not None:
|
193 |
+
g = self.cond_layer(g)
|
194 |
+
|
195 |
+
for i in range(self.n_layers):
|
196 |
+
x_in = self.in_layers[i](x)
|
197 |
+
if g is not None:
|
198 |
+
cond_offset = i * 2 * self.hidden_channels
|
199 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
200 |
+
else:
|
201 |
+
g_l = torch.zeros_like(x_in)
|
202 |
+
|
203 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
204 |
+
acts = self.drop(acts)
|
205 |
+
|
206 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
207 |
+
if i < self.n_layers - 1:
|
208 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
209 |
+
x = (x + res_acts) * x_mask
|
210 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
211 |
+
else:
|
212 |
+
output = output + res_skip_acts
|
213 |
+
return output * x_mask
|
214 |
+
|
215 |
+
def remove_weight_norm(self):
|
216 |
+
if self.gin_channels != 0:
|
217 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
218 |
+
for l in self.in_layers:
|
219 |
+
torch.nn.utils.remove_weight_norm(l)
|
220 |
+
for l in self.res_skip_layers:
|
221 |
+
torch.nn.utils.remove_weight_norm(l)
|
222 |
+
|
223 |
+
|
224 |
+
class ResBlock1(torch.nn.Module):
|
225 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
226 |
+
super(ResBlock1, self).__init__()
|
227 |
+
self.convs1 = nn.ModuleList(
|
228 |
+
[
|
229 |
+
weight_norm(
|
230 |
+
Conv1d(
|
231 |
+
channels,
|
232 |
+
channels,
|
233 |
+
kernel_size,
|
234 |
+
1,
|
235 |
+
dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]),
|
237 |
+
)
|
238 |
+
),
|
239 |
+
weight_norm(
|
240 |
+
Conv1d(
|
241 |
+
channels,
|
242 |
+
channels,
|
243 |
+
kernel_size,
|
244 |
+
1,
|
245 |
+
dilation=dilation[1],
|
246 |
+
padding=get_padding(kernel_size, dilation[1]),
|
247 |
+
)
|
248 |
+
),
|
249 |
+
weight_norm(
|
250 |
+
Conv1d(
|
251 |
+
channels,
|
252 |
+
channels,
|
253 |
+
kernel_size,
|
254 |
+
1,
|
255 |
+
dilation=dilation[2],
|
256 |
+
padding=get_padding(kernel_size, dilation[2]),
|
257 |
+
)
|
258 |
+
),
|
259 |
+
]
|
260 |
+
)
|
261 |
+
self.convs1.apply(init_weights)
|
262 |
+
|
263 |
+
self.convs2 = nn.ModuleList(
|
264 |
+
[
|
265 |
+
weight_norm(
|
266 |
+
Conv1d(
|
267 |
+
channels,
|
268 |
+
channels,
|
269 |
+
kernel_size,
|
270 |
+
1,
|
271 |
+
dilation=1,
|
272 |
+
padding=get_padding(kernel_size, 1),
|
273 |
+
)
|
274 |
+
),
|
275 |
+
weight_norm(
|
276 |
+
Conv1d(
|
277 |
+
channels,
|
278 |
+
channels,
|
279 |
+
kernel_size,
|
280 |
+
1,
|
281 |
+
dilation=1,
|
282 |
+
padding=get_padding(kernel_size, 1),
|
283 |
+
)
|
284 |
+
),
|
285 |
+
weight_norm(
|
286 |
+
Conv1d(
|
287 |
+
channels,
|
288 |
+
channels,
|
289 |
+
kernel_size,
|
290 |
+
1,
|
291 |
+
dilation=1,
|
292 |
+
padding=get_padding(kernel_size, 1),
|
293 |
+
)
|
294 |
+
),
|
295 |
+
]
|
296 |
+
)
|
297 |
+
self.convs2.apply(init_weights)
|
298 |
+
|
299 |
+
def forward(self, x, x_mask=None):
|
300 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
301 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
302 |
+
if x_mask is not None:
|
303 |
+
xt = xt * x_mask
|
304 |
+
xt = c1(xt)
|
305 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
306 |
+
if x_mask is not None:
|
307 |
+
xt = xt * x_mask
|
308 |
+
xt = c2(xt)
|
309 |
+
x = xt + x
|
310 |
+
if x_mask is not None:
|
311 |
+
x = x * x_mask
|
312 |
+
return x
|
313 |
+
|
314 |
+
def remove_weight_norm(self):
|
315 |
+
for l in self.convs1:
|
316 |
+
remove_weight_norm(l)
|
317 |
+
for l in self.convs2:
|
318 |
+
remove_weight_norm(l)
|
319 |
+
|
320 |
+
|
321 |
+
class ResBlock2(torch.nn.Module):
|
322 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
323 |
+
super(ResBlock2, self).__init__()
|
324 |
+
self.convs = nn.ModuleList(
|
325 |
+
[
|
326 |
+
weight_norm(
|
327 |
+
Conv1d(
|
328 |
+
channels,
|
329 |
+
channels,
|
330 |
+
kernel_size,
|
331 |
+
1,
|
332 |
+
dilation=dilation[0],
|
333 |
+
padding=get_padding(kernel_size, dilation[0]),
|
334 |
+
)
|
335 |
+
),
|
336 |
+
weight_norm(
|
337 |
+
Conv1d(
|
338 |
+
channels,
|
339 |
+
channels,
|
340 |
+
kernel_size,
|
341 |
+
1,
|
342 |
+
dilation=dilation[1],
|
343 |
+
padding=get_padding(kernel_size, dilation[1]),
|
344 |
+
)
|
345 |
+
),
|
346 |
+
]
|
347 |
+
)
|
348 |
+
self.convs.apply(init_weights)
|
349 |
+
|
350 |
+
def forward(self, x, x_mask=None):
|
351 |
+
for c in self.convs:
|
352 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
353 |
+
if x_mask is not None:
|
354 |
+
xt = xt * x_mask
|
355 |
+
xt = c(xt)
|
356 |
+
x = xt + x
|
357 |
+
if x_mask is not None:
|
358 |
+
x = x * x_mask
|
359 |
+
return x
|
360 |
+
|
361 |
+
def remove_weight_norm(self):
|
362 |
+
for l in self.convs:
|
363 |
+
remove_weight_norm(l)
|
364 |
+
|
365 |
+
|
366 |
+
class Log(nn.Module):
|
367 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
368 |
+
if not reverse:
|
369 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
370 |
+
logdet = torch.sum(-y, [1, 2])
|
371 |
+
return y, logdet
|
372 |
+
else:
|
373 |
+
x = torch.exp(x) * x_mask
|
374 |
+
return x
|
375 |
+
|
376 |
+
|
377 |
+
class Flip(nn.Module):
|
378 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
379 |
+
x = torch.flip(x, [1])
|
380 |
+
if not reverse:
|
381 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
382 |
+
return x, logdet
|
383 |
+
else:
|
384 |
+
return x
|
385 |
+
|
386 |
+
|
387 |
+
class ElementwiseAffine(nn.Module):
|
388 |
+
def __init__(self, channels):
|
389 |
+
super().__init__()
|
390 |
+
self.channels = channels
|
391 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
392 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
393 |
+
|
394 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
395 |
+
if not reverse:
|
396 |
+
y = self.m + torch.exp(self.logs) * x
|
397 |
+
y = y * x_mask
|
398 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
399 |
+
return y, logdet
|
400 |
+
else:
|
401 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
402 |
+
return x
|
403 |
+
|
404 |
+
|
405 |
+
class ResidualCouplingLayer(nn.Module):
|
406 |
+
def __init__(
|
407 |
+
self,
|
408 |
+
channels,
|
409 |
+
hidden_channels,
|
410 |
+
kernel_size,
|
411 |
+
dilation_rate,
|
412 |
+
n_layers,
|
413 |
+
p_dropout=0,
|
414 |
+
gin_channels=0,
|
415 |
+
mean_only=False,
|
416 |
+
):
|
417 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
418 |
+
super().__init__()
|
419 |
+
self.channels = channels
|
420 |
+
self.hidden_channels = hidden_channels
|
421 |
+
self.kernel_size = kernel_size
|
422 |
+
self.dilation_rate = dilation_rate
|
423 |
+
self.n_layers = n_layers
|
424 |
+
self.half_channels = channels // 2
|
425 |
+
self.mean_only = mean_only
|
426 |
+
|
427 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
428 |
+
self.enc = WN(
|
429 |
+
hidden_channels,
|
430 |
+
kernel_size,
|
431 |
+
dilation_rate,
|
432 |
+
n_layers,
|
433 |
+
p_dropout=p_dropout,
|
434 |
+
gin_channels=gin_channels,
|
435 |
+
)
|
436 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
437 |
+
self.post.weight.data.zero_()
|
438 |
+
self.post.bias.data.zero_()
|
439 |
+
|
440 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
441 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
442 |
+
h = self.pre(x0) * x_mask
|
443 |
+
h = self.enc(h, x_mask, g=g)
|
444 |
+
stats = self.post(h) * x_mask
|
445 |
+
if not self.mean_only:
|
446 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
447 |
+
else:
|
448 |
+
m = stats
|
449 |
+
logs = torch.zeros_like(m)
|
450 |
+
|
451 |
+
if not reverse:
|
452 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
453 |
+
x = torch.cat([x0, x1], 1)
|
454 |
+
logdet = torch.sum(logs, [1, 2])
|
455 |
+
return x, logdet
|
456 |
+
else:
|
457 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
458 |
+
x = torch.cat([x0, x1], 1)
|
459 |
+
return x
|
460 |
+
|
461 |
+
def remove_weight_norm(self):
|
462 |
+
self.enc.remove_weight_norm()
|
463 |
+
|
464 |
+
|
465 |
+
class ConvFlow(nn.Module):
|
466 |
+
def __init__(
|
467 |
+
self,
|
468 |
+
in_channels,
|
469 |
+
filter_channels,
|
470 |
+
kernel_size,
|
471 |
+
n_layers,
|
472 |
+
num_bins=10,
|
473 |
+
tail_bound=5.0,
|
474 |
+
):
|
475 |
+
super().__init__()
|
476 |
+
self.in_channels = in_channels
|
477 |
+
self.filter_channels = filter_channels
|
478 |
+
self.kernel_size = kernel_size
|
479 |
+
self.n_layers = n_layers
|
480 |
+
self.num_bins = num_bins
|
481 |
+
self.tail_bound = tail_bound
|
482 |
+
self.half_channels = in_channels // 2
|
483 |
+
|
484 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
485 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
486 |
+
self.proj = nn.Conv1d(
|
487 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
488 |
+
)
|
489 |
+
self.proj.weight.data.zero_()
|
490 |
+
self.proj.bias.data.zero_()
|
491 |
+
|
492 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
493 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
494 |
+
h = self.pre(x0)
|
495 |
+
h = self.convs(h, x_mask, g=g)
|
496 |
+
h = self.proj(h) * x_mask
|
497 |
+
|
498 |
+
b, c, t = x0.shape
|
499 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
500 |
+
|
501 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
502 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
503 |
+
self.filter_channels
|
504 |
+
)
|
505 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
506 |
+
|
507 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
508 |
+
x1,
|
509 |
+
unnormalized_widths,
|
510 |
+
unnormalized_heights,
|
511 |
+
unnormalized_derivatives,
|
512 |
+
inverse=reverse,
|
513 |
+
tails="linear",
|
514 |
+
tail_bound=self.tail_bound,
|
515 |
+
)
|
516 |
+
|
517 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
518 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
519 |
+
if not reverse:
|
520 |
+
return x, logdet
|
521 |
+
else:
|
522 |
+
return x
|
infer_pack/transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchaudio
|
4 |
+
fairseq==0.12.2
|
5 |
+
scipy==1.9.3
|
6 |
+
pyworld>=0.3.2
|
7 |
+
faiss-cpu==1.7.2 ; python_version < "3.11"
|
8 |
+
faiss-cpu==1.7.3 ; python_version > "3.10"
|
9 |
+
praat-parselmouth>=0.4.3
|
10 |
+
librosa==0.9.2
|
11 |
+
edge-tts
|
util.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import asyncio
|
3 |
+
from io import BytesIO
|
4 |
+
|
5 |
+
from fairseq import checkpoint_utils
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import edge_tts
|
10 |
+
import librosa
|
11 |
+
|
12 |
+
|
13 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/config.py#L43-L55 # noqa
|
14 |
+
def has_mps() -> bool:
|
15 |
+
if sys.platform != "darwin":
|
16 |
+
return False
|
17 |
+
else:
|
18 |
+
if not getattr(torch, 'has_mps', False):
|
19 |
+
return False
|
20 |
+
|
21 |
+
try:
|
22 |
+
torch.zeros(1).to(torch.device("mps"))
|
23 |
+
return True
|
24 |
+
except Exception:
|
25 |
+
return False
|
26 |
+
|
27 |
+
|
28 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/config.py#L58-L71 # noqa
|
29 |
+
def is_half(device: str) -> bool:
|
30 |
+
if device == 'cpu':
|
31 |
+
return False
|
32 |
+
else:
|
33 |
+
if has_mps():
|
34 |
+
return True
|
35 |
+
|
36 |
+
gpu_name = torch.cuda.get_device_name(int(device.split(':')[-1]))
|
37 |
+
if '16' in gpu_name or 'MX' in gpu_name:
|
38 |
+
return False
|
39 |
+
|
40 |
+
return True
|
41 |
+
|
42 |
+
|
43 |
+
def load_hubert_model(device: str, model_path: str = 'hubert_base.pt'):
|
44 |
+
model = checkpoint_utils.load_model_ensemble_and_task(
|
45 |
+
[model_path]
|
46 |
+
)[0][0].to(device)
|
47 |
+
|
48 |
+
if is_half(device):
|
49 |
+
return model.half()
|
50 |
+
else:
|
51 |
+
return model.float()
|
52 |
+
|
53 |
+
|
54 |
+
async def call_edge_tts(speaker_name: str, text: str):
|
55 |
+
tts_com = edge_tts.Communicate(text, speaker_name)
|
56 |
+
tts_raw = b''
|
57 |
+
|
58 |
+
# Stream TTS audio to bytes
|
59 |
+
async for chunk in tts_com.stream():
|
60 |
+
if chunk['type'] == 'audio':
|
61 |
+
tts_raw += chunk['data']
|
62 |
+
|
63 |
+
# Convert mp3 stream to wav
|
64 |
+
ffmpeg_proc = await asyncio.create_subprocess_exec(
|
65 |
+
'ffmpeg',
|
66 |
+
'-f', 'mp3',
|
67 |
+
'-i', '-',
|
68 |
+
'-f', 'wav',
|
69 |
+
'-',
|
70 |
+
stdin=asyncio.subprocess.PIPE,
|
71 |
+
stdout=asyncio.subprocess.PIPE
|
72 |
+
)
|
73 |
+
(tts_wav, _) = await ffmpeg_proc.communicate(tts_raw)
|
74 |
+
|
75 |
+
return librosa.load(BytesIO(tts_wav))
|
vc_infer_pipeline.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np,parselmouth,torch,pdb
|
2 |
+
from time import time as ttime
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from config import x_pad,x_query,x_center,x_max
|
5 |
+
import scipy.signal as signal
|
6 |
+
import pyworld,os,traceback,faiss
|
7 |
+
class VC(object):
|
8 |
+
def __init__(self,tgt_sr,device,is_half):
|
9 |
+
self.sr=16000#hubert输入采样率
|
10 |
+
self.window=160#每帧点数
|
11 |
+
self.t_pad=self.sr*x_pad#每条前后pad时间
|
12 |
+
self.t_pad_tgt=tgt_sr*x_pad
|
13 |
+
self.t_pad2=self.t_pad*2
|
14 |
+
self.t_query=self.sr*x_query#查询切点前后查询时间
|
15 |
+
self.t_center=self.sr*x_center#查询切点位置
|
16 |
+
self.t_max=self.sr*x_max#免查询时长阈值
|
17 |
+
self.device=device
|
18 |
+
self.is_half=is_half
|
19 |
+
|
20 |
+
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
|
21 |
+
time_step = self.window / self.sr * 1000
|
22 |
+
f0_min = 50
|
23 |
+
f0_max = 1100
|
24 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
25 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
26 |
+
if(f0_method=="pm"):
|
27 |
+
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
28 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
29 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
30 |
+
pad_size=(p_len - len(f0) + 1) // 2
|
31 |
+
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
32 |
+
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
33 |
+
elif(f0_method=="harvest"):
|
34 |
+
f0, t = pyworld.harvest(
|
35 |
+
x.astype(np.double),
|
36 |
+
fs=self.sr,
|
37 |
+
f0_ceil=f0_max,
|
38 |
+
f0_floor=f0_min,
|
39 |
+
frame_period=10,
|
40 |
+
)
|
41 |
+
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
42 |
+
f0 = signal.medfilt(f0, 3)
|
43 |
+
f0 *= pow(2, f0_up_key / 12)
|
44 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
45 |
+
tf0=self.sr//self.window#每秒f0点数
|
46 |
+
if (inp_f0 is not None):
|
47 |
+
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
|
48 |
+
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
|
49 |
+
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
|
50 |
+
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
|
51 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
52 |
+
f0bak = f0.copy()
|
53 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
54 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
55 |
+
f0_mel[f0_mel <= 1] = 1
|
56 |
+
f0_mel[f0_mel > 255] = 255
|
57 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
58 |
+
return f0_coarse, f0bak#1-0
|
59 |
+
|
60 |
+
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
|
61 |
+
feats = torch.from_numpy(audio0)
|
62 |
+
if(self.is_half):feats=feats.half()
|
63 |
+
else:feats=feats.float()
|
64 |
+
if feats.dim() == 2: # double channels
|
65 |
+
feats = feats.mean(-1)
|
66 |
+
assert feats.dim() == 1, feats.dim()
|
67 |
+
feats = feats.view(1, -1)
|
68 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
69 |
+
|
70 |
+
inputs = {
|
71 |
+
"source": feats.to(self.device),
|
72 |
+
"padding_mask": padding_mask,
|
73 |
+
"output_layer": 9, # layer 9
|
74 |
+
}
|
75 |
+
t0 = ttime()
|
76 |
+
with torch.no_grad():
|
77 |
+
logits = model.extract_features(**inputs)
|
78 |
+
feats = model.final_proj(logits[0])
|
79 |
+
|
80 |
+
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
|
81 |
+
npy = feats[0].cpu().numpy()
|
82 |
+
if(self.is_half):npy=npy.astype("float32")
|
83 |
+
_, I = index.search(npy, 1)
|
84 |
+
npy=big_npy[I.squeeze()]
|
85 |
+
if(self.is_half):npy=npy.astype("float16")
|
86 |
+
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
|
87 |
+
|
88 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
89 |
+
t1 = ttime()
|
90 |
+
p_len = audio0.shape[0]//self.window
|
91 |
+
if(feats.shape[1]<p_len):
|
92 |
+
p_len=feats.shape[1]
|
93 |
+
if(pitch!=None and pitchf!=None):
|
94 |
+
pitch=pitch[:,:p_len]
|
95 |
+
pitchf=pitchf[:,:p_len]
|
96 |
+
p_len=torch.tensor([p_len],device=self.device).long()
|
97 |
+
with torch.no_grad():
|
98 |
+
if(pitch!=None and pitchf!=None):
|
99 |
+
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
100 |
+
else:
|
101 |
+
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
102 |
+
del feats,p_len,padding_mask
|
103 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
104 |
+
t2 = ttime()
|
105 |
+
times[0] += (t1 - t0)
|
106 |
+
times[2] += (t2 - t1)
|
107 |
+
return audio1
|
108 |
+
|
109 |
+
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
|
110 |
+
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
|
111 |
+
try:
|
112 |
+
index = faiss.read_index(file_index)
|
113 |
+
big_npy = np.load(file_big_npy)
|
114 |
+
except:
|
115 |
+
traceback.print_exc()
|
116 |
+
index=big_npy=None
|
117 |
+
else:
|
118 |
+
index=big_npy=None
|
119 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
|
120 |
+
opt_ts = []
|
121 |
+
if(audio_pad.shape[0]>self.t_max):
|
122 |
+
audio_sum = np.zeros_like(audio)
|
123 |
+
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
|
124 |
+
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
|
125 |
+
s = 0
|
126 |
+
audio_opt=[]
|
127 |
+
t=None
|
128 |
+
t1=ttime()
|
129 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
|
130 |
+
p_len=audio_pad.shape[0]//self.window
|
131 |
+
inp_f0=None
|
132 |
+
if(hasattr(f0_file,'name') ==True):
|
133 |
+
try:
|
134 |
+
with open(f0_file.name,"r")as f:
|
135 |
+
lines=f.read().strip("\n").split("\n")
|
136 |
+
inp_f0=[]
|
137 |
+
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
|
138 |
+
inp_f0=np.array(inp_f0,dtype="float32")
|
139 |
+
except:
|
140 |
+
traceback.print_exc()
|
141 |
+
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
|
142 |
+
pitch, pitchf=None,None
|
143 |
+
if(if_f0==1):
|
144 |
+
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
|
145 |
+
pitch = pitch[:p_len]
|
146 |
+
pitchf = pitchf[:p_len]
|
147 |
+
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
|
148 |
+
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
|
149 |
+
t2=ttime()
|
150 |
+
times[1] += (t2 - t1)
|
151 |
+
for t in opt_ts:
|
152 |
+
t=t//self.window*self.window
|
153 |
+
if (if_f0 == 1):
|
154 |
+
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
155 |
+
else:
|
156 |
+
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
157 |
+
s = t
|
158 |
+
if (if_f0 == 1):
|
159 |
+
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
160 |
+
else:
|
161 |
+
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
162 |
+
audio_opt=np.concatenate(audio_opt)
|
163 |
+
del pitch,pitchf,sid
|
164 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
165 |
+
return audio_opt
|