Sample-API / app.py
adhvaithprasad
removed last token
4ac374e
raw
history blame
2.18 kB
from fastapi import FastAPI
from pydantic import BaseModel
from calculator import calculate
from sentimentAnalysis import sentimentAnalysis
from customerSupport import customerConverstaion
class User_input(BaseModel):
sentence:str
operation:str
x:float
y:float
app = FastAPI()
@app.get("/hello")
def greet_json():
return {"Hello": "World!"}
@app.post("/calculate")
def calculate_func(input:User_input):
res= calculate(input.operation, input.x, input.y)
return res
import requests
# def query(API_URL, headers, payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# print(response)
# return response
@app.post("/HFAPI")
def HF_API():
# API_TOKEN=""
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": f"Bearer {API_TOKEN}"}
# data = query(API_URL,headers, {
# "inputs": "Can you please let us know more details about your ",
# })
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer ......................q"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": "Can you please let us know more details about India? ",
})
return output[0]["generated_text"]
@app.post("/sentimentAnalysis")
def sentimentAnalysis_func(input:User_input):
res= sentimentAnalysis(input.sentence)
return res
@app.post("/getReply")
def getReply_func(input:User_input):
res= customerConverstaion(input.sentence)
return res
@app.post("/hf_spaces")
def HF_interact():
from huggingface_hub import HfApi
# Initialize API client
api = HfApi()
# Replace these with your values
repo_id = 'DSU-FDP/Sample-API'
token = ''
# Authenticate
api.pause_space(repo_id=repo_id)
# List all Spaces (not pausing, just showing how to interact)
spaces = api.list_spaces()
print(spaces)
# Example action: delete a space (be cautious with this!)
# api.delete_repo(repo_id, token=token)