Spaces:
Paused
Paused
from transformers import AutoModelForCausalLM,GenerationConfig,AutoTokenizer,GPTQConfig | |
from peft import AutoPeftModelForCausalLM | |
from peft import PeftModel, PeftConfig | |
import torch | |
def input_data_preprocessing_1(example): | |
processed_example = "<|system|>\n You are a support chatbot who helps with user queries chatbot who always responds in the style of a professional.\n<|user|>\n" + example["instruction"] + "\n<|assistant|>\n" | |
return processed_example | |
def customerConverstaion(prompt): | |
def input_data_preprocessing(example): | |
processed_example = "<|system|>\n You are a support chatbot who helps with user queries chatbot who always responds in the style of a professional.\n<|user|>\n" + example["instruction"] + "\n<|assistant|>\n" | |
return processed_example | |
input_string = input_data_preprocessing( | |
{ | |
"instruction": "i have a question about cancelling order {{Order Number}}", | |
} | |
) | |
tokenizer = AutoTokenizer.from_pretrained("zephyrFT/checkpoint-100") | |
model = AutoPeftModelForCausalLM.from_pretrained("zephyrFT/checkpoint-100", | |
low_cpu_mem_usage=True, | |
return_dict=True, | |
torch_dtype=torch.float16, | |
device_map="cuda") | |
inputs = tokenizer(input_string, return_tensors="pt").to("cuda") | |
generation_config = GenerationConfig( | |
do_sample=True, | |
top_k=1, | |
temperature=0.1, | |
max_new_tokens=256, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
outputs = model.generate(**inputs, generation_config=generation_config) | |
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
def customerConverstaion_1(prompt): | |
# Check GPU availability | |
print("Available GPU devices:", torch.cuda.device_count()) | |
print("Name of the first available GPU:", torch.cuda.get_device_name(0)) | |
config = PeftConfig.from_pretrained("DSU-FDP/customer-support") | |
base_model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-beta-GPTQ", device_map='cuda') | |
model = PeftModel.from_pretrained(base_model, "DSU-FDP/customer-support") | |
from transformers import AutoTokenizer,GPTQConfig | |
tokenizer=AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) | |
tokenizer.padding_side = 'right' | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.add_eos_token = True | |
tokenizer.add_bos_token, tokenizer.add_eos_token | |
tokenizer = AutoTokenizer.from_pretrained("DSU-FDP/customer-support") | |
input_string = input_data_preprocessing( | |
{ | |
"instruction": "i have a question about cancelling order {{Order Number}}", | |
} | |
) | |
inputs = tokenizer(input_string, return_tensors="pt").to("cuda") | |
generation_config = GenerationConfig( | |
do_sample=True, | |
top_k=1, | |
temperature=0.1, | |
max_new_tokens=256, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
outputs = model.generate(**inputs, generation_config=generation_config) | |
return outputs | |