Spaces:
Paused
Paused
adhvaithprasad
commited on
Commit
·
c6f40e8
1
Parent(s):
b09c694
added customer conversation
Browse files- app.py +8 -2
- customerSupport.py +41 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -2,6 +2,7 @@ from fastapi import FastAPI
|
|
2 |
from pydantic import BaseModel
|
3 |
from calculator import calculate
|
4 |
from sentimentAnalysis import sentimentAnalysis
|
|
|
5 |
|
6 |
|
7 |
class User_input(BaseModel):
|
@@ -20,14 +21,19 @@ def greet_json():
|
|
20 |
|
21 |
|
22 |
@app.post("/calculate")
|
23 |
-
def
|
24 |
res= calculate(input.operation, input.x, input.y)
|
25 |
return res
|
26 |
|
27 |
@app.post("/sentimentAnalysis")
|
28 |
-
def
|
29 |
res= sentimentAnalysis(input.sentence)
|
30 |
return res
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from calculator import calculate
|
4 |
from sentimentAnalysis import sentimentAnalysis
|
5 |
+
from customerSupport import customerConverstaion
|
6 |
|
7 |
|
8 |
class User_input(BaseModel):
|
|
|
21 |
|
22 |
|
23 |
@app.post("/calculate")
|
24 |
+
def calculate(input:User_input):
|
25 |
res= calculate(input.operation, input.x, input.y)
|
26 |
return res
|
27 |
|
28 |
@app.post("/sentimentAnalysis")
|
29 |
+
def sentimentAnalysis(input:User_input):
|
30 |
res= sentimentAnalysis(input.sentence)
|
31 |
return res
|
32 |
|
33 |
+
@app.post("/getReply")
|
34 |
+
def getReply(input:User_input):
|
35 |
+
res= customerConverstaion(input.sentence)
|
36 |
+
return res
|
37 |
+
|
38 |
|
39 |
|
customerSupport.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import AutoModelForCausalLM,GenerationConfig
|
3 |
+
from peft import AutoPeftModelForCausalLM
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
|
6 |
+
def input_data_preprocessing(example):
|
7 |
+
|
8 |
+
processed_example = "<|system|>\n You are a support chatbot who helps with user queries chatbot who always responds in the style of a professional.\n<|user|>\n" + example["instruction"] + "\n<|assistant|>\n"
|
9 |
+
|
10 |
+
return processed_example
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def customerConverstaion(prompt):
|
15 |
+
config = PeftConfig.from_pretrained("DSU-FDP/customer-support")
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-beta-GPTQ")
|
17 |
+
model = PeftModel.from_pretrained(base_model, "DSU-FDP/customer-support")
|
18 |
+
from transformers import AutoTokenizer,GPTQConfig
|
19 |
+
tokenizer=AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
20 |
+
tokenizer.padding_side = 'right'
|
21 |
+
tokenizer.pad_token = tokenizer.eos_token
|
22 |
+
tokenizer.add_eos_token = True
|
23 |
+
tokenizer.add_bos_token, tokenizer.add_eos_token
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("DSU-FDP/customer-support")
|
25 |
+
input_string = input_data_preprocessing(
|
26 |
+
{
|
27 |
+
"instruction": "i have a question about cancelling order {{Order Number}}",
|
28 |
+
}
|
29 |
+
)
|
30 |
+
inputs = tokenizer(input_string, return_tensors="pt").to("cuda")
|
31 |
+
generation_config = GenerationConfig(
|
32 |
+
do_sample=True,
|
33 |
+
top_k=1,
|
34 |
+
temperature=0.1,
|
35 |
+
max_new_tokens=256,
|
36 |
+
pad_token_id=tokenizer.eos_token_id
|
37 |
+
)
|
38 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
39 |
+
return outputs
|
40 |
+
|
41 |
+
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ torch
|
|
3 |
transformers
|
4 |
pydantic
|
5 |
uvicorn[standard]
|
|
|
|
3 |
transformers
|
4 |
pydantic
|
5 |
uvicorn[standard]
|
6 |
+
peft
|