Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import mdtex2html
|
6 |
+
from gradio.themes.utils import colors, fonts, sizes
|
7 |
+
import torch
|
8 |
+
from peft import PeftModel
|
9 |
+
from transformers import (
|
10 |
+
AutoModel,
|
11 |
+
AutoTokenizer,
|
12 |
+
AutoModelForCausalLM,
|
13 |
+
BloomForCausalLM,
|
14 |
+
BloomTokenizerFast,
|
15 |
+
LlamaTokenizer,
|
16 |
+
LlamaForCausalLM,
|
17 |
+
GenerationConfig,
|
18 |
+
)
|
19 |
+
|
20 |
+
MODEL_CLASSES = {
|
21 |
+
"bloom": (BloomForCausalLM, BloomTokenizerFast),
|
22 |
+
"chatglm": (AutoModel, AutoTokenizer),
|
23 |
+
"llama": (LlamaForCausalLM, LlamaTokenizer),
|
24 |
+
"auto": (AutoModelForCausalLM, AutoTokenizer),
|
25 |
+
}
|
26 |
+
|
27 |
+
class OpenGVLab(gr.themes.base.Base):
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
*,
|
31 |
+
primary_hue=colors.blue,
|
32 |
+
secondary_hue=colors.sky,
|
33 |
+
neutral_hue=colors.gray,
|
34 |
+
spacing_size=sizes.spacing_md,
|
35 |
+
radius_size=sizes.radius_sm,
|
36 |
+
text_size=sizes.text_md,
|
37 |
+
font=(
|
38 |
+
fonts.GoogleFont("Noto Sans"),
|
39 |
+
"ui-sans-serif",
|
40 |
+
"sans-serif",
|
41 |
+
),
|
42 |
+
font_mono=(
|
43 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
44 |
+
"ui-monospace",
|
45 |
+
"monospace",
|
46 |
+
),
|
47 |
+
):
|
48 |
+
super().__init__(
|
49 |
+
primary_hue=primary_hue,
|
50 |
+
secondary_hue=secondary_hue,
|
51 |
+
neutral_hue=neutral_hue,
|
52 |
+
spacing_size=spacing_size,
|
53 |
+
radius_size=radius_size,
|
54 |
+
text_size=text_size,
|
55 |
+
font=font,
|
56 |
+
font_mono=font_mono,
|
57 |
+
)
|
58 |
+
super().set(
|
59 |
+
body_background_fill="*neutral_50",
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
|
64 |
+
secondary_hue=colors.sky,
|
65 |
+
neutral_hue=colors.gray,
|
66 |
+
spacing_size=sizes.spacing_md,
|
67 |
+
radius_size=sizes.radius_sm,
|
68 |
+
text_size=sizes.text_md,
|
69 |
+
)
|
70 |
+
|
71 |
+
def main():
|
72 |
+
parser = argparse.ArgumentParser()
|
73 |
+
parser.add_argument('--model_type', default="llama", type=str)
|
74 |
+
parser.add_argument('--base_model', default=r"/data/wangpeng/JiaotongGPT-main/merged-sft-no-1ep", type=str)
|
75 |
+
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
|
76 |
+
parser.add_argument('--tokenizer_path', default=None, type=str)
|
77 |
+
parser.add_argument('--gpus', default="0", type=str)
|
78 |
+
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
|
79 |
+
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
|
80 |
+
args = parser.parse_args()
|
81 |
+
if args.only_cpu is True:
|
82 |
+
args.gpus = ""
|
83 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
|
84 |
+
|
85 |
+
def postprocess(self, y):
|
86 |
+
if y is None:
|
87 |
+
return []
|
88 |
+
for i, (message, response) in enumerate(y):
|
89 |
+
y[i] = (
|
90 |
+
None if message is None else mdtex2html.convert((message)),
|
91 |
+
None if response is None else mdtex2html.convert(response),
|
92 |
+
)
|
93 |
+
return y
|
94 |
+
|
95 |
+
gr.Chatbot.postprocess = postprocess
|
96 |
+
|
97 |
+
generation_config = dict(
|
98 |
+
temperature=0.2,
|
99 |
+
top_k=40,
|
100 |
+
top_p=0.9,
|
101 |
+
do_sample=True,
|
102 |
+
num_beams=1,
|
103 |
+
repetition_penalty=1.1,
|
104 |
+
max_new_tokens=400
|
105 |
+
)
|
106 |
+
load_type = torch.float16
|
107 |
+
if torch.cuda.is_available():
|
108 |
+
device = torch.device(0)
|
109 |
+
else:
|
110 |
+
device = torch.device('cpu')
|
111 |
+
|
112 |
+
if args.tokenizer_path is None:
|
113 |
+
args.tokenizer_path = args.base_model
|
114 |
+
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
115 |
+
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
|
116 |
+
base_model = model_class.from_pretrained(
|
117 |
+
args.base_model,
|
118 |
+
load_in_8bit=False,
|
119 |
+
torch_dtype=load_type,
|
120 |
+
low_cpu_mem_usage=True,
|
121 |
+
device_map='auto',
|
122 |
+
trust_remote_code=True,
|
123 |
+
)
|
124 |
+
if args.resize_emb:
|
125 |
+
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
|
126 |
+
tokenzier_vocab_size = len(tokenizer)
|
127 |
+
print(f"Vocab of the base model: {model_vocab_size}")
|
128 |
+
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
|
129 |
+
if model_vocab_size != tokenzier_vocab_size:
|
130 |
+
print("Resize model embeddings to fit tokenizer")
|
131 |
+
base_model.resize_token_embeddings(tokenzier_vocab_size)
|
132 |
+
if args.lora_model:
|
133 |
+
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
|
134 |
+
print("loaded lora model")
|
135 |
+
else:
|
136 |
+
model = base_model
|
137 |
+
|
138 |
+
if device == torch.device('cpu'):
|
139 |
+
model.float()
|
140 |
+
|
141 |
+
model.eval()
|
142 |
+
|
143 |
+
def reset_user_input():
|
144 |
+
return gr.update(value='')
|
145 |
+
|
146 |
+
def reset_state():
|
147 |
+
return [], []
|
148 |
+
|
149 |
+
def generate_prompt(instruction):
|
150 |
+
return f"""You are TransGPT, a specialist in the field of transportation.Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
151 |
+
|
152 |
+
### Instruction:
|
153 |
+
{instruction}
|
154 |
+
|
155 |
+
### Response: """
|
156 |
+
|
157 |
+
def predict(
|
158 |
+
input,
|
159 |
+
chatbot,
|
160 |
+
history,
|
161 |
+
max_new_tokens=128,
|
162 |
+
top_p=0.75,
|
163 |
+
temperature=0.1,
|
164 |
+
top_k=40,
|
165 |
+
num_beams=4,
|
166 |
+
repetition_penalty=1.0,
|
167 |
+
max_memory=256,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
now_input = input
|
171 |
+
chatbot.append((input, ""))
|
172 |
+
history = history or []
|
173 |
+
if len(history) != 0:
|
174 |
+
input = "".join(
|
175 |
+
["### Instruction:\n" + i[0] + "\n\n" + "### Response: " + i[1] + "\n\n" for i in history]) + \
|
176 |
+
"### Instruction:\n" + input
|
177 |
+
input = input[len("### Instruction:\n"):]
|
178 |
+
if len(input) > max_memory:
|
179 |
+
input = input[-max_memory:]
|
180 |
+
prompt = generate_prompt(input)
|
181 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
182 |
+
input_ids = inputs["input_ids"].to(device)
|
183 |
+
generation_config = GenerationConfig(
|
184 |
+
temperature=temperature,
|
185 |
+
top_p=top_p,
|
186 |
+
top_k=top_k,
|
187 |
+
num_beams=num_beams,
|
188 |
+
**kwargs,
|
189 |
+
)
|
190 |
+
with torch.no_grad():
|
191 |
+
generation_output = model.generate(
|
192 |
+
input_ids=input_ids,
|
193 |
+
generation_config=generation_config,
|
194 |
+
return_dict_in_generate=True,
|
195 |
+
output_scores=False,
|
196 |
+
max_new_tokens=max_new_tokens,
|
197 |
+
repetition_penalty=float(repetition_penalty),
|
198 |
+
)
|
199 |
+
s = generation_output.sequences[0]
|
200 |
+
output = tokenizer.decode(s, skip_special_tokens=True)
|
201 |
+
output = output.split("### Response:")[-1].strip()
|
202 |
+
history.append((now_input, output))
|
203 |
+
chatbot[-1] = (now_input, output)
|
204 |
+
return chatbot, history
|
205 |
+
|
206 |
+
title = """<h1 align="center">Welcome to TransGPT!"""
|
207 |
+
|
208 |
+
with gr.Blocks(title="DUOMO TransGPT!", theme=gvlabtheme,
|
209 |
+
css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
|
210 |
+
gr.Markdown(title)
|
211 |
+
# with gr.Blocks() as demo:
|
212 |
+
# gr.HTML("""<h1 align="center">TransGPT</h1>""")
|
213 |
+
# # gr.Markdown(
|
214 |
+
# # "> 为了促进医疗行业大模型的开放研究,本项目开源了TransGPT医疗大模型")
|
215 |
+
chatbot = gr.Chatbot()
|
216 |
+
with gr.Row():
|
217 |
+
with gr.Column(scale=4):
|
218 |
+
with gr.Column(scale=12):
|
219 |
+
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
220 |
+
container=False)
|
221 |
+
with gr.Column(min_width=32, scale=1):
|
222 |
+
submitBtn = gr.Button("Submit", variant="primary")
|
223 |
+
with gr.Column(scale=1):
|
224 |
+
emptyBtn = gr.Button("Clear History")
|
225 |
+
max_length = gr.Slider(
|
226 |
+
0, 4096, value=128, step=1.0, label="Maximum length", interactive=True)
|
227 |
+
top_p = gr.Slider(0, 1, value=0.8, step=0.01,
|
228 |
+
label="Top P", interactive=True)
|
229 |
+
temperature = gr.Slider(
|
230 |
+
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
|
231 |
+
|
232 |
+
history = gr.State([]) # (message, bot_message)
|
233 |
+
|
234 |
+
submitBtn.click(predict, [user_input, chatbot, history, max_length, top_p, temperature], [chatbot, history],
|
235 |
+
show_progress=True)
|
236 |
+
submitBtn.click(reset_user_input, [], [user_input])
|
237 |
+
|
238 |
+
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
239 |
+
demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=8080)
|
240 |
+
|
241 |
+
|
242 |
+
if __name__ == '__main__':
|
243 |
+
main()
|