Dagfinn1962 pikto commited on
Commit
e774b98
·
0 Parent(s):

Duplicate from pikto/prodia

Browse files

Co-authored-by: pikto kenn <[email protected]>

Files changed (14) hide show
  1. .gitattributes +35 -0
  2. README.md +14 -0
  3. app.py +304 -0
  4. back-app.py +104 -0
  5. config.json +17 -0
  6. cutter.py +98 -0
  7. flipper.py +31 -0
  8. play.py +82 -0
  9. pob +63 -0
  10. requirements.txt +4 -0
  11. theme_dropdown.py +57 -0
  12. themes/[email protected] +1 -0
  13. transform.py +13 -0
  14. utils.py +6 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Prodia
3
+ emoji: 🔥
4
+ colorFrom: pink
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.39.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ duplicated_from: pikto/prodia
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import ast
4
+ import requests
5
+
6
+ import logging
7
+ from rembg import new_session
8
+ from cutter import remove, make_label
9
+ from utils import *
10
+
11
+ API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
12
+ API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"
13
+
14
+ from theme_dropdown import create_theme_dropdown # noqa: F401
15
+
16
+ dropdown, js = create_theme_dropdown()
17
+
18
+ models = [
19
+ {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
20
+ {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
21
+ {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
22
+ {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
23
+ {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
24
+ {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
25
+ {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
26
+ {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
27
+ ]
28
+
29
+
30
+ #### REM-BG
31
+
32
+ remove_bg_models = {
33
+ "TracerUniversalB7": "TracerUniversalB7",
34
+ "U2NET": "u2net",
35
+ "U2NET Human Seg": "u2net_human_seg",
36
+ "U2NET Cloth Seg": "u2net_cloth_seg"
37
+ }
38
+
39
+ model_choices = keys(remove_bg_models)
40
+
41
+
42
+ def predict(image, session, smoot, matting, bg_color):
43
+
44
+ session = new_session(remove_bg_models[session])
45
+
46
+ try:
47
+ return remove(session, image, smoot, matting, bg_color)
48
+ except ValueError as err:
49
+ logging.error(err)
50
+ return make_label(str(err)), None
51
+
52
+
53
+ def change_show_mask(chk_state):
54
+ return gr.Image.update(visible=chk_state)
55
+
56
+
57
+ def change_include_matting(chk_state):
58
+ return gr.Box.update(visible=chk_state), (0, 0, 0), 0, 0, 0
59
+
60
+
61
+ def change_foreground_threshold(fg_value, value):
62
+ fg, bg, erode = value
63
+ return fg_value, bg, erode
64
+
65
+
66
+ def change_background_threshold(bg_value, value):
67
+ fg, bg, erode = value
68
+ return fg, bg_value, erode
69
+
70
+
71
+ def change_erode_size(erode_value, value):
72
+ fg, bg, erode = value
73
+ return fg, bg, erode_value
74
+
75
+
76
+ def set_dominant_color(chk_state):
77
+ return chk_state, gr.ColorPicker.update(value=False, visible=not chk_state)
78
+
79
+
80
+ def change_picker_color(picker, dominant):
81
+ if not dominant:
82
+ return picker
83
+ return dominant
84
+
85
+
86
+ def change_background_mode(chk_state):
87
+ return gr.ColorPicker.update(value=False, visible=chk_state), \
88
+ gr.Checkbox.update(value=False, visible=chk_state)
89
+
90
+
91
+
92
+ ###########
93
+
94
+ text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")
95
+
96
+ current_model = models[0]
97
+
98
+ models2 = []
99
+ for model in models:
100
+ model_url = f"models/{model['url']}"
101
+ loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
102
+ models2.append(loaded_model)
103
+
104
+ def text_it(inputs, text_gen=text_gen):
105
+ return text_gen(inputs)
106
+
107
+ def flip_text(x):
108
+ return x[::-1]
109
+
110
+ def send_it(inputs, model_choice):
111
+ proc = models2[model_choice]
112
+ return proc(inputs)
113
+
114
+
115
+ def flip_image(x):
116
+ return np.fliplr(x)
117
+
118
+
119
+ def set_model(current_model_index):
120
+ global current_model
121
+ current_model = models[current_model_index]
122
+ return gr.update(value=f"{current_model['name']}")
123
+
124
+ #define inference function
125
+ #First: Get initial images for the grid display
126
+ def get_initial_images():
127
+ response = requests.post(API_URL_INITIAL, json={
128
+ "data": []
129
+ }).json()
130
+ #data = response["data"][0]['data'][0][0][:-1]
131
+ response_dict = response['data'][0]
132
+ return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]]
133
+
134
+ #Second: Process response dictionary to get imges as hyperlinked image tags
135
+ def process_response(response_dict):
136
+ return [resp[0][:-1] for resp in response_dict["data"]]
137
+
138
+ response_dict = get_initial_images()
139
+ initial = process_response(response_dict)
140
+ initial_imgs = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])
141
+
142
+ #Third: Load more images for the grid
143
+ def get_next10_images(response_dict, row_count):
144
+ row_count = int(row_count)
145
+ #print("(1)",type(response_dict))
146
+ #Convert the string to a dictionary
147
+ if isinstance(response_dict, dict) == False :
148
+ response_dict = ast.literal_eval(response_dict)
149
+ response = requests.post(API_URL_NEXT10, json={
150
+ "data": [response_dict, row_count ] #len(initial)-1
151
+ }).json()
152
+ row_count+=10
153
+ response_dict = response['data'][0]
154
+ #print("(2)",type(response))
155
+ #print("(3)",type(response['data'][0]))
156
+ next_set = [resp[0][:-1] for resp in response_dict["data"]]
157
+ next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
158
+ return response_dict, row_count, next_set_images #response['data'][0]
159
+
160
+
161
+ with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
162
+ gr.Markdown("AI CONTENT TOOLS.")
163
+
164
+ with gr.Tab("T-to-I"):
165
+
166
+ ##model = ("stabilityai/stable-diffusion-2-1")
167
+ model_name1 = gr.Dropdown(
168
+ label="Choose Model",
169
+ choices=[m["name"] for m in models],
170
+ type="index",
171
+ value=current_model["name"],
172
+ interactive=True,
173
+ )
174
+ input_text = gr.Textbox(label="Prompt idea",)
175
+
176
+ ## run = gr.Button("Generate Images")
177
+ with gr.Row():
178
+ see_prompts = gr.Button("Generate Prompts")
179
+ run = gr.Button("Generate Images", variant="primary")
180
+
181
+ with gr.Row():
182
+ magic1 = gr.Textbox(label="Generated Prompt", lines=2)
183
+ output1 = gr.Image(label="")
184
+
185
+
186
+ with gr.Row():
187
+ magic2 = gr.Textbox(label="Generated Prompt", lines=2)
188
+ output2 = gr.Image(label="")
189
+
190
+
191
+ run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
192
+ run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
193
+ see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
194
+ see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
195
+
196
+ model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
197
+
198
+ with gr.Tab("AI Library"):
199
+ #Using Gradio Demos as API - This is Hot!
200
+ #get_next10_images(response_dict=response_dict, row_count=9)
201
+ #position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
202
+
203
+ #Defining the Blocks layout
204
+ # with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
205
+ gr.HTML(value="top of page", elem_id="top",visible=False)
206
+ gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
207
+ <div
208
+ style="
209
+ display: inline-flex;
210
+ align-items: center;
211
+ gap: 0.8rem;
212
+ font-size: 1.75rem;
213
+ "
214
+ >
215
+ <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
216
+ Using Gradio API - 2 </h1><br></div>
217
+ <div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
218
+ Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
219
+ </div>""")
220
+ with gr.Tab("AI Library"):
221
+ #with gr.Tab(): #(elem_id = "col-container"):
222
+ #gr.Column(): #(elem_id = "col-container"):
223
+ b1 = gr.Button("Load More Images").style(full_width=False)
224
+ df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
225
+ row_count = gr.Number(visible=False, value=19 )
226
+ img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search",
227
+ value=initial_imgs ) #initial[:-1] )
228
+
229
+
230
+ b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" )
231
+
232
+ ########################## REM-BG
233
+ with gr.Tab("Rem_BG"):
234
+
235
+ color_state = gr.State(value=False)
236
+ matting_state = gr.State(value=(0, 0, 0))
237
+ gr.HTML("<center><h1>Remove Background Tool</h1></center>")
238
+
239
+ with gr.Row(equal_height=False):
240
+ with gr.Column():
241
+ input_img = gr.Image(type="pil", label="Input image")
242
+ drp_models = gr.Dropdown(choices=model_choices, label="Model Segment", value="TracerUniversalB7")
243
+
244
+ with gr.Row():
245
+ chk_include_matting = gr.Checkbox(label="Matting", value=False)
246
+ chk_smoot_mask = gr.Checkbox(label="Smoot Mask", value=False)
247
+ chk_show_mask = gr.Checkbox(label="Show Mask", value=False)
248
+ with gr.Box(visible=False) as slider_matting:
249
+ slr_fg_threshold = gr.Slider(0, 300, value=270, step=1, label="Alpha matting foreground threshold")
250
+ slr_bg_threshold = gr.Slider(0, 50, value=20, step=1, label="Alpha matting background threshold")
251
+ slr_erode_size = gr.Slider(0, 20, value=11, step=1, label="Alpha matting erode size")
252
+ with gr.Box():
253
+ with gr.Row():
254
+ chk_change_color = gr.Checkbox(label="Change background color", value=False)
255
+ pkr_color = gr.ColorPicker(label="Pick a new color", visible=False)
256
+ chk_dominant = gr.Checkbox(label="Use dominant color", value=False, visible=False)
257
+
258
+ #######################
259
+ ############################
260
+ #############################
261
+ run_btn = gr.Button(value="Remove background", variant="primary")
262
+
263
+ with gr.Column():
264
+ output_img = gr.Image(type="pil", label="Image Result")
265
+ mask_img = gr.Image(type="pil", label="Image Mask", visible=False)
266
+ gr.ClearButton(components=[input_img, output_img, mask_img])
267
+
268
+ chk_include_matting.change(change_include_matting, inputs=[chk_include_matting],
269
+ outputs=[slider_matting, matting_state,
270
+ slr_fg_threshold, slr_bg_threshold, slr_erode_size])
271
+
272
+ slr_bg_threshold.change(change_background_threshold, inputs=[slr_bg_threshold, matting_state],
273
+ outputs=[matting_state])
274
+
275
+ slr_fg_threshold.change(change_foreground_threshold, inputs=[slr_fg_threshold, matting_state],
276
+ outputs=[matting_state])
277
+
278
+ slr_erode_size.change(change_erode_size, inputs=[slr_erode_size, matting_state],
279
+ outputs=[matting_state])
280
+
281
+ chk_show_mask.change(change_show_mask, inputs=[chk_show_mask], outputs=[mask_img])
282
+
283
+ chk_change_color.change(change_background_mode, inputs=[chk_change_color],
284
+ outputs=[pkr_color, chk_dominant])
285
+
286
+ pkr_color.change(change_picker_color, inputs=[pkr_color, chk_dominant], outputs=[color_state])
287
+
288
+ chk_dominant.change(set_dominant_color, inputs=[chk_dominant], outputs=[color_state, pkr_color])
289
+
290
+ run_btn.click(predict, inputs=[input_img, drp_models, chk_smoot_mask, matting_state, color_state],
291
+ outputs=[output_img, mask_img])
292
+
293
+
294
+
295
+ # text_input = gr.Textbox() ## Diffuser
296
+ # image_output = gr.Image()
297
+ # image_button = gr.Button("Flip")
298
+
299
+
300
+
301
+ # text_button.click(flip_text, inputs=text_input, outputs=text_output)
302
+ # image_button.click(flip_image, inputs=image_input, outputs=image_output)
303
+ pan.queue(concurrency_count=200)
304
+ pan.launch(inline=True, show_api=True, max_threads=400)
back-app.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import ast
4
+ import requests
5
+
6
+ from theme_dropdown import create_theme_dropdown # noqa: F401
7
+
8
+ dropdown, js = create_theme_dropdown()
9
+
10
+ models = [
11
+ {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
12
+ {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
13
+ {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
14
+ {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
15
+ {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
16
+ {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
17
+ {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
18
+ {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
19
+ ]
20
+
21
+ text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")
22
+
23
+ current_model = models[0]
24
+
25
+ models2 = []
26
+ for model in models:
27
+ model_url = f"models/{model['url']}"
28
+ loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
29
+ models2.append(loaded_model)
30
+
31
+ def text_it(inputs, text_gen=text_gen):
32
+ return text_gen(inputs)
33
+
34
+ def flip_text(x):
35
+ return x[::-1]
36
+
37
+ def send_it(inputs, model_choice):
38
+ proc = models2[model_choice]
39
+ return proc(inputs)
40
+
41
+
42
+ def flip_image(x):
43
+ return np.fliplr(x)
44
+
45
+
46
+ def set_model(current_model_index):
47
+ global current_model
48
+ current_model = models[current_model_index]
49
+ return gr.update(value=f"{current_model['name']}")
50
+
51
+
52
+ with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
53
+ gr.Markdown("AI CONTENT TOOLS.")
54
+
55
+ with gr.Tab("T-to-I"):
56
+
57
+ ##model = ("stabilityai/stable-diffusion-2-1")
58
+ model_name1 = gr.Dropdown(
59
+ label="Choose Model",
60
+ choices=[m["name"] for m in models],
61
+ type="index",
62
+ value=current_model["name"],
63
+ interactive=True,
64
+ )
65
+ input_text = gr.Textbox(label="Prompt idea",)
66
+
67
+ ## run = gr.Button("Generate Images")
68
+ with gr.Row():
69
+ see_prompts = gr.Button("Generate Prompts")
70
+ run = gr.Button("Generate Images", variant="primary")
71
+
72
+ with gr.Row():
73
+ magic1 = gr.Textbox(label="Generated Prompt", lines=2)
74
+ output1 = gr.Image(label="")
75
+
76
+
77
+ with gr.Row():
78
+ magic2 = gr.Textbox(label="Generated Prompt", lines=2)
79
+ output2 = gr.Image(label="")
80
+
81
+
82
+ run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
83
+ run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
84
+ see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
85
+ see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
86
+
87
+ model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
88
+
89
+ #with gr.Tab("Flip Image"):
90
+ #Using Gradio Demos as API - This is Hot!
91
+
92
+
93
+ with gr.Tab("Diffuser"):
94
+ with gr.Row():
95
+ text_input = gr.Textbox() ## Diffuser
96
+ image_output = gr.Image()
97
+ image_button = gr.Button("Flip")
98
+
99
+
100
+
101
+ # text_button.click(flip_text, inputs=text_input, outputs=text_output)
102
+ # image_button.click(flip_image, inputs=image_input, outputs=image_output)
103
+ pan.queue(concurrency_count=200)
104
+ pan.launch(inline=True, show_api=True, max_threads=400)
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ let job = await createJob({
2
+ prompt: "puppies in a cloud, 4k",
3
+ });
4
+
5
+ console.log("Job Created! Waiting...");
6
+
7
+ while (job.status !== "succeeded" && job.status !== "failed") {
8
+ await new Promise((resolve) => setTimeout(resolve, 250));
9
+
10
+ job = await getJob(job.job);
11
+ }
12
+
13
+ if(job.status !== "succeeded") {
14
+ throw new Error("Job failed!");
15
+ }
16
+
17
+ console.log("Generation completed!", job.imageUrl);
cutter.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import PIL
2
+ import numpy as np
3
+ from PIL import Image, ImageColor, ImageDraw
4
+ from PIL.Image import Image as PILImage
5
+ from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
6
+ from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
7
+ from pymatting.util.util import stack_images
8
+ from rembg.bg import post_process, naive_cutout, apply_background_color
9
+ from scipy.ndimage import binary_erosion
10
+
11
+
12
+ def alpha_matting_cutout(img: PILImage, trimap: np.ndarray) -> PILImage:
13
+ if img.mode == "RGBA" or img.mode == "CMYK":
14
+ img = img.convert("RGB")
15
+
16
+ img = np.asarray(img)
17
+
18
+ img_normalized = img / 255.0
19
+ trimap_normalized = trimap / 255.0
20
+
21
+ alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
22
+ foreground = estimate_foreground_ml(img_normalized, alpha)
23
+ cutout = stack_images(foreground, alpha)
24
+
25
+ cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
26
+ return Image.fromarray(cutout)
27
+
28
+
29
+ def generate_trimap(
30
+ mask: PILImage,
31
+ foreground_threshold: int,
32
+ background_threshold: int,
33
+ erode_structure_size: int,
34
+ ) -> np.ndarray:
35
+ mask = np.asarray(mask)
36
+
37
+ is_foreground = mask > foreground_threshold
38
+ is_background = mask < background_threshold
39
+
40
+ structure = None
41
+ if erode_structure_size > 0:
42
+ structure = np.ones(
43
+ (erode_structure_size, erode_structure_size), dtype=np.uint8
44
+ )
45
+
46
+ is_foreground = binary_erosion(is_foreground, structure=structure)
47
+ is_background = binary_erosion(is_background, structure=structure, border_value=1)
48
+
49
+ trimap = np.full(mask.shape, dtype=np.uint8, fill_value=128)
50
+ trimap[is_foreground] = 255
51
+ trimap[is_background] = 0
52
+
53
+ return trimap
54
+
55
+
56
+ def get_background_dominant_color(img: PILImage, mask: PILImage) -> tuple:
57
+ negative_img = img.copy()
58
+ negative_mask = PIL.ImageOps.invert(mask)
59
+ negative_img.putalpha(negative_mask)
60
+ negative_img = negative_img.resize((1, 1))
61
+ r, g, b, a = negative_img.getpixel((0, 0))
62
+ return r, g, b, 255
63
+
64
+
65
+ def remove(session, img: PILImage, smoot: bool, matting: tuple, color) -> (PILImage, PILImage):
66
+ mask = session.predict(img)[0]
67
+
68
+ if smoot:
69
+ mask = PIL.Image.fromarray(post_process(np.array(mask)))
70
+
71
+ fg_t, bg_t, erode = matting
72
+
73
+ if fg_t > 0 or bg_t > 0 or erode > 0:
74
+ mask = generate_trimap(mask, *matting)
75
+ try:
76
+ cutout = alpha_matting_cutout(img, mask)
77
+ mask = PIL.Image.fromarray(mask)
78
+ except ValueError as err:
79
+ raise err
80
+ else:
81
+ cutout = naive_cutout(img, mask)
82
+
83
+ if color is True:
84
+ color = get_background_dominant_color(img, mask)
85
+ cutout = apply_background_color(cutout, color)
86
+ elif isinstance(color, str):
87
+ r, g, b = ImageColor.getcolor(color, "RGB")
88
+ cutout = apply_background_color(cutout, (r, g, b, 255))
89
+
90
+ return cutout, mask
91
+
92
+
93
+ def make_label(text, width=600, height=200, color="black") -> PILImage:
94
+ image = Image.new("RGB", (width, height), color)
95
+ draw = ImageDraw.Draw(image)
96
+ text_width, text_height = draw.textsize(text)
97
+ draw.text(((width-text_width)/2, height/2), text)
98
+ return image
flipper.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+
4
+
5
+ def flip_text(x):
6
+ return x[::-1]
7
+
8
+
9
+ def flip_image(x):
10
+ return np.fliplr(x)
11
+
12
+
13
+ with gr.Blocks() as demo:
14
+ gr.Markdown("Flip text or image files using this demo.")
15
+ with gr.Tab("Flip Text"):
16
+ text_input = gr.Textbox()
17
+ text_output = gr.Textbox()
18
+ text_button = gr.Button("Flip")
19
+ with gr.Tab("Flip Image"):
20
+ with gr.Row():
21
+ image_input = gr.Image()
22
+ image_output = gr.Image()
23
+ image_button = gr.Button("Flip")
24
+
25
+ with gr.Accordion("Open for More!"):
26
+ gr.Markdown("Look at me...")
27
+
28
+ text_button.click(flip_text, inputs=text_input, outputs=text_output)
29
+ image_button.click(flip_image, inputs=image_input, outputs=image_output)
30
+
31
+ demo.launch()
play.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import requests
3
+
4
+ #Using Gradio Demos as API - This is Hot!
5
+ API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
6
+ API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"
7
+
8
+ #define inference function
9
+ #First: Get initial images for the grid display
10
+ def get_initial_images():
11
+ response = requests.post(API_URL_INITIAL, json={
12
+ "data": []
13
+ }).json()
14
+ #data = response["data"][0]['data'][0][0][:-1]
15
+ response_dict = response['data'][0]
16
+ return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]]
17
+
18
+ #Second: Process response dictionary to get imges as hyperlinked image tags
19
+ def process_response(response_dict):
20
+ return [resp[0][:-1] for resp in response_dict["data"]]
21
+
22
+ response_dict = get_initial_images()
23
+ initial = process_response(response_dict)
24
+ initial_imgs = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])
25
+
26
+ #Third: Load more images for the grid
27
+ def get_next10_images(response_dict, row_count):
28
+ row_count = int(row_count)
29
+ #print("(1)",type(response_dict))
30
+ #Convert the string to a dictionary
31
+ if isinstance(response_dict, dict) == False :
32
+ response_dict = ast.literal_eval(response_dict)
33
+ response = requests.post(API_URL_NEXT10, json={
34
+ "data": [response_dict, row_count ] #len(initial)-1
35
+ }).json()
36
+ row_count+=10
37
+ response_dict = response['data'][0]
38
+ #print("(2)",type(response))
39
+ #print("(3)",type(response['data'][0]))
40
+ next_set = [resp[0][:-1] for resp in response_dict["data"]]
41
+ next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
42
+ return response_dict, row_count, next_set_images #response['data'][0]
43
+
44
+ #get_next10_images(response_dict=response_dict, row_count=9)
45
+ #position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
46
+
47
+ #Defining the Blocks layout
48
+ with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
49
+ gr.HTML(value="top of page", elem_id="top",visible=False)
50
+ gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
51
+ <div
52
+ style="
53
+ display: inline-flex;
54
+ align-items: center;
55
+ gap: 0.8rem;
56
+ font-size: 1.75rem;
57
+ "
58
+ >
59
+ <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
60
+ Using Gradio Demos as API - 2 </h1><br></div>
61
+ <div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
62
+ Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
63
+ </div>""")
64
+ with gr.Accordion(label="Details about the working:", open=False, elem_id='accordion'):
65
+ gr.HTML("""
66
+ <p style="margin-bottom: 10px; font-size: 90%"><br>
67
+ ▶️Do you see the "view api" link located in the footer of this application?
68
+ By clicking on this link, a page will open which provides documentation on the REST API that developers can use to query the Interface function / Block events.<br>
69
+ ▶️In this demo, I am making such an API request to the <a href="https://huggingface.co/spaces/ysharma/Playground_AI_Exploration" target="_blank">Playground_AI_Exploration</a> Space.<br>
70
+ ▶️I am exposing an API endpoint of this Gradio app as well. This can easily be done by one line of code, just set the api_name parameter of the event listener.
71
+ </p></div>""")
72
+
73
+ with gr.Column(): #(elem_id = "col-container"):
74
+ b1 = gr.Button("Load More Images").style(full_width=False)
75
+ df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
76
+ row_count = gr.Number(visible=False, value=19 )
77
+ img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search",
78
+ value=initial_imgs ) #initial[:-1] )
79
+
80
+ gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/Stream_PlaygroundAI_Images?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></center>
81
+ </p></div>''')
82
+ b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" )
pob ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import json
4
+ url = "https://api.prodia.com/v1/job"
5
+
6
+ headers = {
7
+ "accept": "application/json",
8
+ "content-type": "application/json",
9
+ "X-Prodia-Key": "69e66898-010d-4cd1-9e22-090f73ad007b"
10
+ }
11
+ models = [
12
+ {"name": "Timeless", "url": "timeless-1.0.ckpt 1.0.ckpt [7c4971d4]"},
13
+ {"name": "Dreamlike-diffusion-2.0.", "url": "dreamlike-diffusion-2.0.safetensors [fdcf65e7]"},
14
+ {"name": "Deliberate_v2", "url": "deliberate_v2.safetensors [10ec4b29]"},
15
+ {"name": "Anything-v4.5-pruned", "url": "anything-v4.5-pruned.ckpt [65745d25]"},
16
+ ]
17
+
18
+ current_model = models[0]
19
+
20
+ models2 = []
21
+ for model in models:
22
+ model_url = f"models/{model['url']}"
23
+ loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
24
+ models2.append(loaded_model)
25
+
26
+
27
+ def text_it(inputs, text_gen=text_gen):
28
+ return text_gen(inputs)
29
+
30
+
31
+ def set_model(current_model_index):
32
+ global current_model
33
+ current_model = models[current_model_index]
34
+ return gr.update(value=f"{current_model['name']}")
35
+
36
+
37
+ def send_it(inputs, model_choice):
38
+ proc = models2[model_choice]
39
+ return proc(inputs)
40
+
41
+
42
+ with gr.Blocks() as myface:
43
+ gr.HTML(
44
+
45
+ )
46
+
47
+ with gr.Row():
48
+ with gr.Row():
49
+ input_text = gr.Textbox(label="Iput Prompt", placeholder="", lines=1)
50
+ # Model selection dropdown
51
+ model_name1 = gr.Dropdown(
52
+ label="Choose Model",
53
+ choices=[m["name"] for m in models],
54
+ type="index",
55
+ value=current_model["name"],
56
+ interactive=True,
57
+ )
58
+ with gr.Row():
59
+ see_prompts = gr.Button("Generate Prompts")
60
+ run = gr.Button("Generate Images", variant="primary")
61
+
62
+ if __name__ == "__main__":
63
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ rembg~=2.0.47
2
+ pillow~=9.5.0
3
+ pymatting
4
+ opencv-python-headless
theme_dropdown.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pathlib
3
+
4
+ from gradio.themes.utils import ThemeAsset
5
+
6
+
7
+ def create_theme_dropdown():
8
+ import gradio as gr
9
+
10
+ asset_path = pathlib.Path(__file__).parent / "themes"
11
+ themes = []
12
+ for theme_asset in os.listdir(str(asset_path)):
13
+ themes.append(
14
+ (ThemeAsset(theme_asset), gr.Theme.load(str(asset_path / theme_asset)))
15
+ )
16
+
17
+ def make_else_if(theme_asset):
18
+ return f"""
19
+ else if (theme == '{str(theme_asset[0].version)}') {{
20
+ var theme_css = `{theme_asset[1]._get_theme_css()}`
21
+ }}"""
22
+
23
+ head, tail = themes[0], themes[1:]
24
+ if_statement = f"""
25
+ if (theme == "{str(head[0].version)}") {{
26
+ var theme_css = `{head[1]._get_theme_css()}`
27
+ }} {" ".join(make_else_if(t) for t in tail)}
28
+ """
29
+
30
+ latest_to_oldest = sorted([t[0] for t in themes], key=lambda asset: asset.version)[
31
+ ::-1
32
+ ]
33
+ latest_to_oldest = [str(t.version) for t in latest_to_oldest]
34
+
35
+ component = gr.Dropdown(
36
+ choices=latest_to_oldest,
37
+ value=latest_to_oldest[0],
38
+ render=False,
39
+ label="Select Version",
40
+ ).style(container=False)
41
+
42
+ return (
43
+ component,
44
+ f"""
45
+ (theme) => {{
46
+ if (!document.querySelector('.theme-css')) {{
47
+ var theme_elem = document.createElement('style');
48
+ theme_elem.classList.add('theme-css');
49
+ document.head.appendChild(theme_elem);
50
+ }} else {{
51
+ var theme_elem = document.querySelector('.theme-css');
52
+ }}
53
+ {if_statement}
54
+ theme_elem.innerHTML = theme_css;
55
+ }}
56
+ """,
57
+ )
themes/[email protected] ADDED
@@ -0,0 +1 @@
 
 
1
+ {"theme": {"_font": [{"__gradio_font__": true, "name": "Poppins", "class": "google"}, {"__gradio_font__": true, "name": "Source Sans Pro", "class": "google"}, {"__gradio_font__": true, "name": "system-ui", "class": "font"}, {"__gradio_font__": true, "name": "sans-system-ui", "class": "font"}], "_font_mono": [{"__gradio_font__": true, "name": "DM Mono", "class": "google"}, {"__gradio_font__": true, "name": "ui-monospace", "class": "font"}, {"__gradio_font__": true, "name": "Consolas", "class": "font"}, {"__gradio_font__": true, "name": "monospace", "class": "font"}], "_stylesheets": ["https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&display=swap", "https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap", "https://fonts.googleapis.com/css2?family=DM+Mono:wght@400;600&display=swap"], "background_fill_primary": "white", "background_fill_primary_dark": "*neutral_950", "background_fill_secondary": "*neutral_50", "background_fill_secondary_dark": "*neutral_900", "block_background_fill": "*background_fill_primary", "block_background_fill_dark": "*neutral_800", "block_border_color": "*border_color_primary", "block_border_color_dark": "*border_color_primary", "block_border_width": "1px", "block_info_text_color": "*body_text_color_subdued", "block_info_text_color_dark": "*body_text_color_subdued", "block_info_text_size": "*text_sm", "block_info_text_weight": "400", "block_label_background_fill": "*background_fill_primary", "block_label_background_fill_dark": "*background_fill_secondary", "block_label_border_color": "*border_color_primary", "block_label_border_color_dark": "*border_color_primary", "block_label_border_width": "1px", "block_label_margin": "0", "block_label_padding": "*spacing_sm *spacing_lg", "block_label_radius": "calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px) 0", "block_label_right_radius": "0 calc(*radius_lg - 1px) 0 calc(*radius_lg - 1px)", "block_label_text_color": "*neutral_500", "block_label_text_color_dark": "*neutral_200", "block_label_text_size": "*text_sm", "block_label_text_weight": "400", "block_padding": "*spacing_xl calc(*spacing_xl + 2px)", "block_radius": "*radius_lg", "block_shadow": "none", "block_title_background_fill": "none", "block_title_border_color": "none", "block_title_border_width": "0px", "block_title_padding": "0", "block_title_radius": "none", "block_title_text_color": "*neutral_500", "block_title_text_color_dark": "*neutral_200", "block_title_text_size": "*text_md", "block_title_text_weight": "400", "body_background_fill": "*background_fill_primary", "body_background_fill_dark": "*background_fill_primary", "body_text_color": "*neutral_800", "body_text_color_dark": "*neutral_100", "body_text_color_subdued": "*neutral_400", "body_text_color_subdued_dark": "*neutral_400", "body_text_size": "*text_md", "body_text_weight": "400", "border_color_accent": "*primary_300", "border_color_accent_dark": "*neutral_600", "border_color_primary": "*neutral_200", "border_color_primary_dark": "*neutral_700", "button_border_width": "*input_border_width", "button_border_width_dark": "*input_border_width", "button_cancel_background_fill": "*button_secondary_background_fill", "button_cancel_background_fill_dark": "*button_secondary_background_fill", "button_cancel_background_fill_hover": "*button_cancel_background_fill", "button_cancel_background_fill_hover_dark": "*button_cancel_background_fill", "button_cancel_border_color": "*button_secondary_border_color", "button_cancel_border_color_dark": "*button_secondary_border_color", "button_cancel_border_color_hover": "*button_cancel_border_color", "button_cancel_border_color_hover_dark": "*button_cancel_border_color", "button_cancel_text_color": "*button_secondary_text_color", "button_cancel_text_color_dark": "*button_secondary_text_color", "button_cancel_text_color_hover": "*button_cancel_text_color", "button_cancel_text_color_hover_dark": "*button_cancel_text_color", "button_large_padding": "*spacing_lg calc(2 * *spacing_lg)", "button_large_radius": "*radius_lg", "button_large_text_size": "*text_lg", "button_large_text_weight": "600", "button_primary_background_fill": "*primary_200", "button_primary_background_fill_dark": "*primary_700", "button_primary_background_fill_hover": "*button_primary_background_fill", "button_primary_background_fill_hover_dark": "*button_primary_background_fill", "button_primary_border_color": "*primary_200", "button_primary_border_color_dark": "*primary_600", "button_primary_border_color_hover": "*button_primary_border_color", "button_primary_border_color_hover_dark": "*button_primary_border_color", "button_primary_text_color": "*primary_600", "button_primary_text_color_dark": "white", "button_primary_text_color_hover": "*button_primary_text_color", "button_primary_text_color_hover_dark": "*button_primary_text_color", "button_secondary_background_fill": "*neutral_200", "button_secondary_background_fill_dark": "*neutral_600", "button_secondary_background_fill_hover": "*button_secondary_background_fill", "button_secondary_background_fill_hover_dark": "*button_secondary_background_fill", "button_secondary_border_color": "*neutral_200", "button_secondary_border_color_dark": "*neutral_600", "button_secondary_border_color_hover": "*button_secondary_border_color", "button_secondary_border_color_hover_dark": "*button_secondary_border_color", "button_secondary_text_color": "*neutral_700", "button_secondary_text_color_dark": "white", "button_secondary_text_color_hover": "*button_secondary_text_color", "button_secondary_text_color_hover_dark": "*button_secondary_text_color", "button_shadow": "none", "button_shadow_active": "none", "button_shadow_hover": "none", "button_small_padding": "*spacing_sm calc(2 * *spacing_sm)", "button_small_radius": "*radius_lg", "button_small_text_size": "*text_md", "button_small_text_weight": "400", "button_transition": "background-color 0.2s ease", "checkbox_background_color": "*background_fill_primary", "checkbox_background_color_dark": "*neutral_800", "checkbox_background_color_focus": "*checkbox_background_color", "checkbox_background_color_focus_dark": "*checkbox_background_color", "checkbox_background_color_hover": "*checkbox_background_color", "checkbox_background_color_hover_dark": "*checkbox_background_color", "checkbox_background_color_selected": "*secondary_600", "checkbox_background_color_selected_dark": "*secondary_600", "checkbox_border_color": "*neutral_300", "checkbox_border_color_dark": "*neutral_700", "checkbox_border_color_focus": "*secondary_500", "checkbox_border_color_focus_dark": "*secondary_500", "checkbox_border_color_hover": "*neutral_300", "checkbox_border_color_hover_dark": "*neutral_600", "checkbox_border_color_selected": "*secondary_600", "checkbox_border_color_selected_dark": "*secondary_600", "checkbox_border_radius": "*radius_sm", "checkbox_border_width": "*input_border_width", "checkbox_border_width_dark": "*input_border_width", "checkbox_check": "url(\"data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3cpath d='M12.207 4.793a1 1 0 010 1.414l-5 5a1 1 0 01-1.414 0l-2-2a1 1 0 011.414-1.414L6.5 9.086l4.293-4.293a1 1 0 011.414 0z'/%3e%3c/svg%3e\")", "checkbox_label_background_fill": "*button_secondary_background_fill", "checkbox_label_background_fill_dark": "*button_secondary_background_fill", "checkbox_label_background_fill_hover": "*button_secondary_background_fill_hover", "checkbox_label_background_fill_hover_dark": "*button_secondary_background_fill_hover", "checkbox_label_background_fill_selected": "*checkbox_label_background_fill", "checkbox_label_background_fill_selected_dark": "*checkbox_label_background_fill", "checkbox_label_border_color": "*border_color_primary", "checkbox_label_border_color_dark": "*border_color_primary", "checkbox_label_border_color_hover": "*checkbox_label_border_color", "checkbox_label_border_color_hover_dark": "*checkbox_label_border_color", "checkbox_label_border_width": "*input_border_width", "checkbox_label_border_width_dark": "*input_border_width", "checkbox_label_gap": "*spacing_lg", "checkbox_label_padding": "*spacing_md calc(2 * *spacing_md)", "checkbox_label_shadow": "none", "checkbox_label_text_color": "*body_text_color", "checkbox_label_text_color_dark": "*body_text_color", "checkbox_label_text_color_selected": "*checkbox_label_text_color", "checkbox_label_text_color_selected_dark": "*checkbox_label_text_color", "checkbox_label_text_size": "*text_md", "checkbox_label_text_weight": "400", "checkbox_shadow": "*input_shadow", "color_accent": "*primary_500", "color_accent_soft": "*primary_50", "color_accent_soft_dark": "*neutral_700", "container_radius": "*radius_lg", "embed_radius": "*radius_lg", "error_background_fill": "#fee2e2", "error_background_fill_dark": "*background_fill_primary", "error_border_color": "#fecaca", "error_border_color_dark": "*border_color_primary", "error_border_width": "1px", "error_text_color": "#ef4444", "error_text_color_dark": "#ef4444", "font": "'Poppins', 'Source Sans Pro', 'system-ui', 'sans-system-ui'", "font_mono": "'DM Mono', 'ui-monospace', 'Consolas', monospace", "form_gap_width": "0px", "input_background_fill": "*neutral_100", "input_background_fill_dark": "*neutral_700", "input_background_fill_focus": "*secondary_500", "input_background_fill_focus_dark": "*secondary_600", "input_background_fill_hover": "*input_background_fill", "input_background_fill_hover_dark": "*input_background_fill", "input_border_color": "*border_color_primary", "input_border_color_dark": "*border_color_primary", "input_border_color_focus": "*secondary_300", "input_border_color_focus_dark": "*neutral_700", "input_border_color_hover": "*input_border_color", "input_border_color_hover_dark": "*input_border_color", "input_border_width": "0px", "input_padding": "*spacing_xl", "input_placeholder_color": "*neutral_400", "input_placeholder_color_dark": "*neutral_500", "input_radius": "*radius_lg", "input_shadow": "none", "input_shadow_focus": "*input_shadow", "input_text_size": "*text_md", "input_text_weight": "400", "layout_gap": "*spacing_xxl", "link_text_color": "*secondary_600", "link_text_color_active": "*secondary_600", "link_text_color_active_dark": "*secondary_500", "link_text_color_dark": "*secondary_500", "link_text_color_hover": "*secondary_700", "link_text_color_hover_dark": "*secondary_400", "link_text_color_visited": "*secondary_500", "link_text_color_visited_dark": "*secondary_600", "loader_color": "*color_accent", "name": "base", "neutral_100": "#f4f4f5", "neutral_200": "#e4e4e7", "neutral_300": "#d4d4d8", "neutral_400": "#a1a1aa", "neutral_50": "#fafafa", "neutral_500": "#71717a", "neutral_600": "#52525b", "neutral_700": "#3f3f46", "neutral_800": "#27272a", "neutral_900": "#18181b", "neutral_950": "#0f0f11", "panel_background_fill": "*background_fill_secondary", "panel_background_fill_dark": "*background_fill_secondary", "panel_border_color": "*border_color_primary", "panel_border_color_dark": "*border_color_primary", "panel_border_width": "0", "primary_100": "#d6def5", "primary_200": "#adbeeb", "primary_300": "#819adf", "primary_400": "#5879d5", "primary_50": "#ebeffa", "primary_500": "#3e5ac8", "primary_600": "#28489f", "primary_700": "#112344", "primary_800": "#0b172d", "primary_900": "#060d18", "primary_950": "#03060c", "prose_header_text_weight": "600", "prose_text_size": "*text_md", "prose_text_weight": "400", "radio_circle": "url(\"data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3ccircle cx='8' cy='8' r='3'/%3e%3c/svg%3e\")", "radius_lg": "12px", "radius_md": "8px", "radius_sm": "6px", "radius_xl": "16px", "radius_xs": "4px", "radius_xxl": "24px", "radius_xxs": "2px", "secondary_100": "#f3f4f6", "secondary_200": "#e5e7eb", "secondary_300": "#d1d5db", "secondary_400": "#9ca3af", "secondary_50": "#f9fafb", "secondary_500": "#6b7280", "secondary_600": "#4b5563", "secondary_700": "#374151", "secondary_800": "#1f2937", "secondary_900": "#111827", "secondary_950": "#0b0f19", "section_header_text_size": "*text_md", "section_header_text_weight": "400", "shadow_drop": "rgba(0,0,0,0.05) 0px 1px 2px 0px", "shadow_drop_lg": "0 1px 3px 0 rgb(0 0 0 / 0.1), 0 1px 2px -1px rgb(0 0 0 / 0.1)", "shadow_inset": "rgba(0,0,0,0.05) 0px 2px 4px 0px inset", "shadow_spread": "3px", "shadow_spread_dark": "1px", "slider_color": "auto", "spacing_lg": "10px", "spacing_md": "8px", "spacing_sm": "6px", "spacing_xl": "14px", "spacing_xs": "4px", "spacing_xxl": "28px", "spacing_xxs": "2px", "stat_background_fill": "*primary_300", "stat_background_fill_dark": "*primary_500", "table_border_color": "*neutral_300", "table_border_color_dark": "*neutral_700", "table_even_background_fill": "white", "table_even_background_fill_dark": "*neutral_950", "table_odd_background_fill": "*neutral_50", "table_odd_background_fill_dark": "*neutral_900", "table_radius": "*radius_lg", "table_row_focus": "*color_accent_soft", "table_row_focus_dark": "*color_accent_soft", "text_lg": "16px", "text_md": "14px", "text_sm": "12px", "text_xl": "22px", "text_xs": "10px", "text_xxl": "26px", "text_xxs": "9px"}, "version": "0.0.1"}
transform.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+
3
+ url = "https://api.prodia.com/v1/transform"
4
+
5
+ headers = {
6
+ "accept": "application/json",
7
+ "content-type": "application/json",
8
+ "X-Prodia-Key": "69e66898-010d-4cd1-9e22-090f73ad007b"
9
+ }
10
+
11
+ response = requests.post(url, headers=headers)
12
+
13
+ print(response.text)
utils.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ def keys(dictionary: dict):
2
+ return [k for k, v in dictionary.items()]
3
+
4
+
5
+ def split_numbers(numbers: str):
6
+ return [int(i) for i in numbers.split(",")]