Danielrahmai1991 commited on
Commit
e1ce179
1 Parent(s): 6afb9b1

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +35 -35
main.py CHANGED
@@ -50,40 +50,40 @@ llm_chain_model = LLMChain(prompt=prompt1, llm=llm)
50
  # for retriver
51
 
52
 
53
- def format_docs(docs):
54
- return "\n\n".join(doc.page_content for doc in docs)
55
-
56
- model_name = "BAAI/bge-base-en-v1.5"
57
- model_kwargs = {"device":'cpu'}
58
- encode_kwargs = {'normalize_embeddings':True}
59
-
60
- hf = HuggingFaceEmbeddings(
61
- model_name = model_name,
62
- model_kwargs = model_kwargs,
63
- encode_kwargs = encode_kwargs
64
- )
65
-
66
-
67
- vectorstore = Chroma(
68
- collection_name="example_collection",
69
- embedding_function=hf,
70
- persist_directory="./chroma_langchain_db", # Where to save data locally, remove if not neccesary
71
- )
72
-
73
- retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
74
- template = """you are the financial ai assistant
75
- {context}
76
- Question: {question}
77
- Helpful Answer:"""
78
- custom_rag_prompt = PromptTemplate.from_template(template)
79
-
80
- rag_chain = (
81
- {"context": retriever | format_docs, "question": RunnablePassthrough()}
82
- | custom_rag_prompt
83
- | llm
84
- | StrOutputParser()
85
- )
86
- print("retriver done")
87
 
88
  from fastapi import FastAPI
89
 
@@ -106,7 +106,7 @@ class Item(BaseModel):
106
 
107
  @app.post("/prompt/")
108
  def create_item(item: Item):
109
- message_response = rag_chain.invoke(item.get('question'))
110
  return {"item": item, "message": "LLm response", 'response': message_response}
111
 
112
 
 
50
  # for retriver
51
 
52
 
53
+ # def format_docs(docs):
54
+ # return "\n\n".join(doc.page_content for doc in docs)
55
+
56
+ # model_name = "BAAI/bge-base-en-v1.5"
57
+ # model_kwargs = {"device":'cpu'}
58
+ # encode_kwargs = {'normalize_embeddings':True}
59
+
60
+ # hf = HuggingFaceEmbeddings(
61
+ # model_name = model_name,
62
+ # model_kwargs = model_kwargs,
63
+ # encode_kwargs = encode_kwargs
64
+ # )
65
+
66
+
67
+ # vectorstore = Chroma(
68
+ # collection_name="example_collection",
69
+ # embedding_function=hf,
70
+ # persist_directory="./chroma_langchain_db", # Where to save data locally, remove if not neccesary
71
+ # )
72
+
73
+ # retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
74
+ # template = """you are the financial ai assistant
75
+ # {context}
76
+ # Question: {question}
77
+ # Helpful Answer:"""
78
+ # custom_rag_prompt = PromptTemplate.from_template(template)
79
+
80
+ # rag_chain = (
81
+ # {"context": retriever | format_docs, "question": RunnablePassthrough()}
82
+ # | custom_rag_prompt
83
+ # | llm
84
+ # | StrOutputParser()
85
+ # )
86
+ # print("retriver done")
87
 
88
  from fastapi import FastAPI
89
 
 
106
 
107
  @app.post("/prompt/")
108
  def create_item(item: Item):
109
+ message_response = llm_chain_model.run(item.get('question'))
110
  return {"item": item, "message": "LLm response", 'response': message_response}
111
 
112