File size: 4,709 Bytes
5d4afba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import { NextApiRequest, NextApiResponse } from 'next';

import { OPENAI_API_HOST } from '@/utils/app/const';
import { cleanSourceText } from '@/utils/server/google';

import { Message } from '@/types/chat';
import { GoogleBody, GoogleSource } from '@/types/google';

import { Readability } from '@mozilla/readability';
import endent from 'endent';
import jsdom, { JSDOM } from 'jsdom';

const handler = async (req: NextApiRequest, res: NextApiResponse<any>) => {
  try {
    const { messages, key, model, googleAPIKey, googleCSEId } =
      req.body as GoogleBody;

    const userMessage = messages[messages.length - 1];
    const query = encodeURIComponent(userMessage.content.trim());

    const googleRes = await fetch(
      `https://customsearch.googleapis.com/customsearch/v1?key=${
        googleAPIKey ? googleAPIKey : process.env.GOOGLE_API_KEY
      }&cx=${
        googleCSEId ? googleCSEId : process.env.GOOGLE_CSE_ID
      }&q=${query}&num=5`,
    );

    const googleData = await googleRes.json();

    const sources: GoogleSource[] = googleData.items.map((item: any) => ({
      title: item.title,
      link: item.link,
      displayLink: item.displayLink,
      snippet: item.snippet,
      image: item.pagemap?.cse_image?.[0]?.src,
      text: '',
    }));

    const sourcesWithText: any = await Promise.all(
      sources.map(async (source) => {
        try {
          const timeoutPromise = new Promise((_, reject) =>
            setTimeout(() => reject(new Error('Request timed out')), 5000),
          );

          const res = (await Promise.race([
            fetch(source.link),
            timeoutPromise,
          ])) as any;

          // if (res) {
          const html = await res.text();

          const virtualConsole = new jsdom.VirtualConsole();
          virtualConsole.on('error', (error) => {
            if (!error.message.includes('Could not parse CSS stylesheet')) {
              console.error(error);
            }
          });

          const dom = new JSDOM(html, { virtualConsole });
          const doc = dom.window.document;
          const parsed = new Readability(doc).parse();

          if (parsed) {
            let sourceText = cleanSourceText(parsed.textContent);

            return {
              ...source,
              // TODO: switch to tokens
              text: sourceText.slice(0, 2000),
            } as GoogleSource;
          }
          // }

          return null;
        } catch (error) {
          console.error(error);
          return null;
        }
      }),
    );

    const filteredSources: GoogleSource[] = sourcesWithText.filter(Boolean);

    const answerPrompt = endent`
    Provide me with the information I requested. Use the sources to provide an accurate response. Respond in markdown format. Cite the sources you used as a markdown link as you use them at the end of each sentence by number of the source (ex: [[1]](link.com)). Provide an accurate response and then stop. Today's date is ${new Date().toLocaleDateString()}.

    Example Input:
    What's the weather in San Francisco today?

    Example Sources:
    [Weather in San Francisco](https://www.google.com/search?q=weather+san+francisco)

    Example Response:
    It's 70 degrees and sunny in San Francisco today. [[1]](https://www.google.com/search?q=weather+san+francisco)

    Input:
    ${userMessage.content.trim()}

    Sources:
    ${filteredSources.map((source) => {
      return endent`
      ${source.title} (${source.link}):
      ${source.text}
      `;
    })}

    Response:
    `;

    const answerMessage: Message = { role: 'user', content: answerPrompt };

    const answerRes = await fetch(`${OPENAI_API_HOST}/v1/chat/completions`, {
      headers: {
        'Content-Type': 'application/json',
        Authorization: `Bearer ${key ? key : process.env.OPENAI_API_KEY}`,
        ...(process.env.OPENAI_ORGANIZATION && {
          'OpenAI-Organization': process.env.OPENAI_ORGANIZATION,
        }),
      },
      method: 'POST',
      body: JSON.stringify({
        model: model.id,
        messages: [
          {
            role: 'system',
            content: `Use the sources to provide an accurate response. Respond in markdown format. Cite the sources you used as [1](link), etc, as you use them. Maximum 4 sentences.`,
          },
          answerMessage,
        ],
        max_tokens: 1000,
        temperature: 1,
        stream: false,
      }),
    });

    const { choices: choices2 } = await answerRes.json();
    const answer = choices2[0].message.content;

    res.status(200).json({ answer });
  } catch (error) {
    console.error(error);
    res.status(500).json({ error: 'Error'})
  }
};

export default handler;