from diffusers import StableDiffusionPipeline import torch modelieo=['nitrosocke/Arcane-Diffusion', 'dreamlike-art/dreamlike-diffusion-1.0', 'nitrosocke/archer-diffusion', 'Linaqruf/anything-v3.0', 'nitrosocke/mo-di-diffusion', 'nitrosocke/classic-anim-diffusion', 'dallinmackay/Van-Gogh-diffusion', 'wavymulder/wavyfusion', 'wavymulder/Analog-Diffusion', 'nitrosocke/redshift-diffusion', 'prompthero/midjourney-v4-diffusion', 'hakurei/waifu-diffusion', 'DGSpitzer/Cyberpunk-Anime-Diffusion', 'nitrosocke/elden-ring-diffusion', 'naclbit/trinart_stable_diffusion_v2', 'nitrosocke/spider-verse-diffusion', 'Fictiverse/Stable_Diffusion_BalloonArt_Model', 'dallinmackay/Tron-Legacy-diffusion', 'lambdalabs/sd-pokemon-diffusers', 'AstraliteHeart/pony-diffusion', 'nousr/robo-diffusion'] def TextToImage(Prompt,model): model_id = model pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cpu") prompt = Prompt image = pipe(prompt).images[0] return image import gradio as gr interface = gr.Interface(fn=TextToImage, inputs=["text", gr.Dropdown(modelieo)], outputs="image", title='Text to Image') interface.launch()