Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
from peft import PeftModel
|
|
|
4 |
|
5 |
-
|
6 |
-
base_model = AutoModelForCausalLM.from_pretrained("meta/llama-2-7b-hf") # Smaller model
|
7 |
model = PeftModel.from_pretrained(base_model, "DarkAngel/gitallama")
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
9 |
|
|
|
10 |
def generate_response(shloka, transliteration):
|
11 |
"""
|
12 |
Generates the response using the fine-tuned LLaMA model.
|
@@ -17,14 +22,14 @@ def generate_response(shloka, transliteration):
|
|
17 |
"content": f"Shloka: {shloka} Transliteration: {transliteration}"
|
18 |
}
|
19 |
]
|
20 |
-
|
21 |
inputs = tokenizer.apply_chat_template(
|
22 |
input_message,
|
23 |
tokenize=True,
|
24 |
add_generation_prompt=True,
|
25 |
return_tensors="pt"
|
26 |
-
).to("cpu")
|
27 |
|
|
|
28 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
29 |
generated_tokens = model.generate(
|
30 |
input_ids=inputs,
|
@@ -36,7 +41,6 @@ def generate_response(shloka, transliteration):
|
|
36 |
)
|
37 |
|
38 |
raw_response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
39 |
-
|
40 |
try:
|
41 |
sections = raw_response.split("Hindi Meaning:")
|
42 |
english_meaning = sections[0].strip()
|
@@ -44,17 +48,19 @@ def generate_response(shloka, transliteration):
|
|
44 |
hindi_meaning = hindi_and_word[0].strip()
|
45 |
word_meaning = hindi_and_word[1].strip()
|
46 |
|
|
|
47 |
formatted_response = (
|
48 |
f"English Meaning:\n{english_meaning}\n\n"
|
49 |
f"Hindi Meaning:\n{hindi_meaning}\n\n"
|
50 |
f"Word Meaning:\n{word_meaning}"
|
51 |
)
|
52 |
except IndexError:
|
|
|
53 |
formatted_response = raw_response
|
54 |
|
55 |
return formatted_response
|
56 |
|
57 |
-
|
58 |
interface = gr.Interface(
|
59 |
fn=generate_response,
|
60 |
inputs=[
|
@@ -68,4 +74,4 @@ interface = gr.Interface(
|
|
68 |
|
69 |
# Launch the interface
|
70 |
if __name__ == "__main__":
|
71 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
+
from transformers import TextStreamer
|
4 |
+
|
5 |
+
# Load the fine-tuned model and tokenizer
|
6 |
+
# model, tokenizer = FastLanguageModel.from_pretrained("lora_model")
|
7 |
from peft import PeftModel
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
+
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
|
|
11 |
model = PeftModel.from_pretrained(base_model, "DarkAngel/gitallama")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
13 |
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
15 |
def generate_response(shloka, transliteration):
|
16 |
"""
|
17 |
Generates the response using the fine-tuned LLaMA model.
|
|
|
22 |
"content": f"Shloka: {shloka} Transliteration: {transliteration}"
|
23 |
}
|
24 |
]
|
|
|
25 |
inputs = tokenizer.apply_chat_template(
|
26 |
input_message,
|
27 |
tokenize=True,
|
28 |
add_generation_prompt=True,
|
29 |
return_tensors="pt"
|
30 |
+
).to("cpu")
|
31 |
|
32 |
+
# Generate response
|
33 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
34 |
generated_tokens = model.generate(
|
35 |
input_ids=inputs,
|
|
|
41 |
)
|
42 |
|
43 |
raw_response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
|
|
44 |
try:
|
45 |
sections = raw_response.split("Hindi Meaning:")
|
46 |
english_meaning = sections[0].strip()
|
|
|
48 |
hindi_meaning = hindi_and_word[0].strip()
|
49 |
word_meaning = hindi_and_word[1].strip()
|
50 |
|
51 |
+
|
52 |
formatted_response = (
|
53 |
f"English Meaning:\n{english_meaning}\n\n"
|
54 |
f"Hindi Meaning:\n{hindi_meaning}\n\n"
|
55 |
f"Word Meaning:\n{word_meaning}"
|
56 |
)
|
57 |
except IndexError:
|
58 |
+
|
59 |
formatted_response = raw_response
|
60 |
|
61 |
return formatted_response
|
62 |
|
63 |
+
|
64 |
interface = gr.Interface(
|
65 |
fn=generate_response,
|
66 |
inputs=[
|
|
|
74 |
|
75 |
# Launch the interface
|
76 |
if __name__ == "__main__":
|
77 |
+
interface.launch()
|