|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
|
|
def find_exp_dirs(ignore_repo: bool = False) -> list[str]: |
|
repo_dir = pathlib.Path(__file__).parent |
|
exp_root_dir = repo_dir / 'experiments' |
|
if not exp_root_dir.exists(): |
|
return [] |
|
exp_dirs = sorted(exp_root_dir.glob('*')) |
|
exp_dirs = [ |
|
exp_dir for exp_dir in exp_dirs |
|
if (exp_dir / 'pytorch_lora_weights.bin').exists() |
|
] |
|
if ignore_repo: |
|
exp_dirs = [ |
|
exp_dir for exp_dir in exp_dirs if not (exp_dir / '.git').exists() |
|
] |
|
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs] |
|
|
|
|
|
def save_model_card( |
|
save_dir: pathlib.Path, |
|
base_model: str, |
|
instance_prompt: str, |
|
test_prompt: str = '', |
|
test_image_dir: str = '', |
|
) -> None: |
|
image_str = '' |
|
if test_prompt and test_image_dir: |
|
image_paths = sorted((save_dir / test_image_dir).glob('*')) |
|
if image_paths: |
|
image_str = f'Test prompt: {test_prompt}\n' |
|
for image_path in image_paths: |
|
rel_path = image_path.relative_to(save_dir) |
|
image_str += f'![{image_path.stem}]({rel_path})\n' |
|
|
|
model_card = f'''--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
instance_prompt: {instance_prompt} |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- lora |
|
inference: true |
|
--- |
|
# LoRA DreamBooth - {save_dir.name} |
|
|
|
These are LoRA adaption weights for [{base_model}](https://huggingface.co/{base_model}). The weights were trained on the instance prompt "{instance_prompt}" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. |
|
|
|
{image_str} |
|
''' |
|
|
|
with open(save_dir / 'README.md', 'w') as f: |
|
f.write(model_card) |
|
|