twitter_scraper / app.py
Davis's picture
Update app.py
1cfb9ce
raw
history blame
1.89 kB
import streamlit as st
import twint
import pandas as pd
# add banner image
st.header("Data Scraper App")
st.image('twitter.jpg')
st.subheader('''
A simple app to scrap data from Twitter.
''')
# form to collect searcy query and other conditions
my_form = st.form(key='Twitter_form')
search_query = my_form.text_input('Input your search query')
data_limit = my_form.slider('How many tweets do you want to get?',
10,
3000,
value= 100,
step=10)
output_csv = my_form.radio('Save data to a CSV file?',
['Yes', 'No'])
file_name = my_form.text_input('Name the CSV file:')
submit = my_form.form_submit_button(label='Search')
# function to show output in pandas dataframe with specific folumns
def twint_to_pd(columns):
return twint.output.panda.Tweets_df[columns]
# configure twint to serach the query
if submit:
config = twint.Config()
config.Search = search_query
config.Limit = data_limit
config.Pandas = True
if output_csv == "Yes":
config.Store_csv = True
config.Output = 'data/{}.csv'.format(file_name)
twint.run.Search(config)
st.subheader("Results: Sample Data")
if output_csv == "Yes":
# show data in pandas dataframe
data = pd.read_csv('data/{}.csv'.format(file_name),usecols=['date','username','tweet'])
st.table(data)
else:
data = twint_to_pd(["date","username","tweet"])
st.table(data)
#download the dataframe
@st.cache
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv().encode('utf-8')
csv = convert_df(data)
st.download_button(
label="Download scrapped data as CSV",
data=csv,
file_name='{}.csv'.format(file_name),
mime='text/csv',
)