Spaces:
Running
on
Zero
Running
on
Zero
Create appc.py
Browse files
appc.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import spaces
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import PIL.Image
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms.functional as TF
|
9 |
+
from compel import Compel
|
10 |
+
|
11 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
12 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
13 |
+
from controlnet_aux import PidiNetDetector, HEDdetector
|
14 |
+
from diffusers.utils import load_image
|
15 |
+
from huggingface_hub import HfApi, snapshot_download
|
16 |
+
from pathlib import Path
|
17 |
+
from PIL import Image, ImageOps
|
18 |
+
import cv2
|
19 |
+
from gradio_imageslider import ImageSlider
|
20 |
+
|
21 |
+
js_func = """
|
22 |
+
function refresh() {
|
23 |
+
const url = new URL(window.location);
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
def nms(x, t, s):
|
28 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
29 |
+
|
30 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
31 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
32 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
33 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
34 |
+
|
35 |
+
y = np.zeros_like(x)
|
36 |
+
|
37 |
+
for f in [f1, f2, f3, f4]:
|
38 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
39 |
+
|
40 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
41 |
+
z[y > t] = 255
|
42 |
+
return z
|
43 |
+
|
44 |
+
def HWC3(x):
|
45 |
+
assert x.dtype == np.uint8
|
46 |
+
if x.ndim == 2:
|
47 |
+
x = x[:, :, None]
|
48 |
+
assert x.ndim == 3
|
49 |
+
H, W, C = x.shape
|
50 |
+
assert C == 1 or C == 3 or C == 4
|
51 |
+
if C == 3:
|
52 |
+
return x
|
53 |
+
if C == 1:
|
54 |
+
return np.concatenate([x, x, x], axis=2)
|
55 |
+
if C == 4:
|
56 |
+
color = x[:, :, 0:3].astype(np.float32)
|
57 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
58 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
59 |
+
y = y.clip(0, 255).astype(np.uint8)
|
60 |
+
return y
|
61 |
+
|
62 |
+
DESCRIPTION = ''
|
63 |
+
|
64 |
+
if not torch.cuda.is_available():
|
65 |
+
DESCRIPTION += ""
|
66 |
+
|
67 |
+
style_list = [
|
68 |
+
{
|
69 |
+
"name": "(No style)",
|
70 |
+
"prompt": "{prompt}",
|
71 |
+
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "Cinematic",
|
75 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
76 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
77 |
+
},
|
78 |
+
# ... other styles ...
|
79 |
+
]
|
80 |
+
|
81 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
82 |
+
STYLE_NAMES = list(styles.keys())
|
83 |
+
DEFAULT_STYLE_NAME = "(No style)"
|
84 |
+
|
85 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
86 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
87 |
+
return p.replace("{prompt}", positive), n + negative
|
88 |
+
|
89 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
90 |
+
|
91 |
+
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
92 |
+
|
93 |
+
# Download the model files
|
94 |
+
ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl")
|
95 |
+
ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl")
|
96 |
+
ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")
|
97 |
+
|
98 |
+
# Load the models
|
99 |
+
vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16)
|
100 |
+
vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16)
|
101 |
+
vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16)
|
102 |
+
|
103 |
+
controlnet_pony = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
|
104 |
+
controlnet_cyber = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
|
105 |
+
controlnet_stallion = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
|
106 |
+
|
107 |
+
pipe_pony = StableDiffusionXLControlNetPipeline.from_pretrained(
|
108 |
+
ckpt_dir_pony, controlnet=controlnet_pony, vae=vae_pony, torch_dtype=torch.float16, scheduler=eulera_scheduler
|
109 |
+
)
|
110 |
+
pipe_cyber = StableDiffusionXLControlNetPipeline.from_pretrained(
|
111 |
+
ckpt_dir_cyber, controlnet=controlnet_cyber, vae=vae_cyber, torch_dtype=torch.float16, scheduler=eulera_scheduler
|
112 |
+
)
|
113 |
+
pipe_stallion = StableDiffusionXLControlNetPipeline.from_pretrained(
|
114 |
+
ckpt_dir_stallion, controlnet=controlnet_stallion, vae=vae_stallion, torch_dtype=torch.float16, scheduler=eulera_scheduler
|
115 |
+
)
|
116 |
+
|
117 |
+
MAX_SEED = np.iinfo(np.int32).max
|
118 |
+
processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
119 |
+
compel_processor = Compel(tokenizer=pipe_pony.tokenizer, truncate_long_prompts=True)
|
120 |
+
|
121 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
122 |
+
if randomize_seed:
|
123 |
+
seed = random.randint(0, MAX_SEED)
|
124 |
+
return seed
|
125 |
+
|
126 |
+
@spaces.GPU(duration=120)
|
127 |
+
def run(
|
128 |
+
image: dict,
|
129 |
+
prompt: str,
|
130 |
+
negative_prompt: str,
|
131 |
+
model_choice: str, # Add this new input
|
132 |
+
style_name: str = DEFAULT_STYLE_NAME,
|
133 |
+
num_steps: int = 25,
|
134 |
+
guidance_scale: float = 5,
|
135 |
+
controlnet_conditioning_scale: float = 1.0,
|
136 |
+
seed: int = 0,
|
137 |
+
use_hed: bool = False,
|
138 |
+
use_canny: bool = False,
|
139 |
+
progress=gr.Progress(track_tqdm=True),
|
140 |
+
) -> PIL.Image.Image:
|
141 |
+
# Get the composite image from the EditorValue dict
|
142 |
+
composite_image = image['composite']
|
143 |
+
width, height = composite_image.size
|
144 |
+
|
145 |
+
# Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
|
146 |
+
max_size = 1024
|
147 |
+
ratio = min(max_size / width, max_size / height)
|
148 |
+
new_width = int(width * ratio)
|
149 |
+
new_height = int(height * ratio)
|
150 |
+
|
151 |
+
# Resize the image
|
152 |
+
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
153 |
+
|
154 |
+
if use_canny:
|
155 |
+
controlnet_img = np.array(resized_image)
|
156 |
+
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
157 |
+
controlnet_img = HWC3(controlnet_img)
|
158 |
+
image = Image.fromarray(controlnet_img)
|
159 |
+
elif not use_hed:
|
160 |
+
controlnet_img = resized_image
|
161 |
+
image = resized_image
|
162 |
+
else:
|
163 |
+
controlnet_img = processor(resized_image, scribble=False)
|
164 |
+
controlnet_img = np.array(controlnet_img)
|
165 |
+
controlnet_img = nms(controlnet_img, 127, 3)
|
166 |
+
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
167 |
+
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
168 |
+
controlnet_img[controlnet_img > random_val] = 255
|
169 |
+
controlnet_img[controlnet_img < 255] = 0
|
170 |
+
image = Image.fromarray(controlnet_img)
|
171 |
+
|
172 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
173 |
+
|
174 |
+
# Preprocess the prompt using compel
|
175 |
+
prompt_embeds = compel_processor(prompt)
|
176 |
+
negative_prompt_embeds = compel_processor(negative_prompt)
|
177 |
+
|
178 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
179 |
+
|
180 |
+
# Select the appropriate pipe based on the model choice
|
181 |
+
if model_choice == "Pony Realism v21":
|
182 |
+
pipe = pipe_pony
|
183 |
+
elif model_choice == "Cyber Realistic Pony v61":
|
184 |
+
pipe = pipe_cyber
|
185 |
+
else: # "Stallion Dreams Pony Realistic v1"
|
186 |
+
pipe = pipe_stallion
|
187 |
+
|
188 |
+
pipe.to(device)
|
189 |
+
|
190 |
+
if use_canny:
|
191 |
+
out = pipe(
|
192 |
+
prompt_embeds=prompt_embeds,
|
193 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
194 |
+
image=image,
|
195 |
+
num_inference_steps=num_steps,
|
196 |
+
generator=generator,
|
197 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
198 |
+
guidance_scale=guidance_scale,
|
199 |
+
width=new_width,
|
200 |
+
height=new_height,
|
201 |
+
).images[0]
|
202 |
+
else:
|
203 |
+
out = pipe(
|
204 |
+
prompt_embeds=prompt_embeds,
|
205 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
206 |
+
image=image,
|
207 |
+
num_inference_steps=num_steps,
|
208 |
+
generator=generator,
|
209 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
210 |
+
guidance_scale=guidance_scale,
|
211 |
+
width=new_width,
|
212 |
+
height=new_height,
|
213 |
+
).images[0]
|
214 |
+
|
215 |
+
pipe.to("cpu")
|
216 |
+
torch.cuda.empty_cache()
|
217 |
+
|
218 |
+
return (controlnet_img, out)
|
219 |
+
|
220 |
+
with gr.Blocks(css="style.css", js=js_func) as demo:
|
221 |
+
gr.Markdown(DESCRIPTION, elem_id="description")
|
222 |
+
gr.DuplicateButton(
|
223 |
+
value="Duplicate Space for private use",
|
224 |
+
elem_id="duplicate-button",
|
225 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
226 |
+
)
|
227 |
+
|
228 |
+
with gr.Row():
|
229 |
+
with gr.Column():
|
230 |
+
with gr.Group():
|
231 |
+
image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
|
232 |
+
prompt = gr.Textbox(label="Prompt")
|
233 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
234 |
+
model_choice = gr.Dropdown(
|
235 |
+
["Pony Realism v21", "Cyber Realistic Pony v61", "Stallion Dreams Pony Realistic v1"],
|
236 |
+
label="Model Choice",
|
237 |
+
value="Pony Realism v21"
|
238 |
+
)
|
239 |
+
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
|
240 |
+
use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
|
241 |
+
run_button = gr.Button("Run")
|
242 |
+
with gr.Accordion("Advanced options", open=False):
|
243 |
+
negative_prompt = gr.Textbox(
|
244 |
+
label="Negative prompt",
|
245 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
246 |
+
)
|
247 |
+
num_steps = gr.Slider(
|
248 |
+
label="Number of steps",
|
249 |
+
minimum=1,
|
250 |
+
maximum=50,
|
251 |
+
step=1,
|
252 |
+
value=25,
|
253 |
+
)
|
254 |
+
guidance_scale = gr.Slider(
|
255 |
+
label="Guidance scale",
|
256 |
+
minimum=0.1,
|
257 |
+
maximum=10.0,
|
258 |
+
step=0.1,
|
259 |
+
value=5,
|
260 |
+
)
|
261 |
+
controlnet_conditioning_scale = gr.Slider(
|
262 |
+
label="controlnet conditioning scale",
|
263 |
+
minimum=0.5,
|
264 |
+
maximum=5.0,
|
265 |
+
step=0.1,
|
266 |
+
value=0.9,
|
267 |
+
)
|
268 |
+
seed = gr.Slider(
|
269 |
+
label="Seed",
|
270 |
+
minimum=0,
|
271 |
+
maximum=MAX_SEED,
|
272 |
+
step=1,
|
273 |
+
value=0,
|
274 |
+
)
|
275 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
276 |
+
|
277 |
+
with gr.Column():
|
278 |
+
with gr.Group():
|
279 |
+
image_slider = ImageSlider(position=0.5)
|
280 |
+
|
281 |
+
|
282 |
+
inputs = [
|
283 |
+
image,
|
284 |
+
prompt,
|
285 |
+
negative_prompt,
|
286 |
+
model_choice, # Add this new input
|
287 |
+
style,
|
288 |
+
num_steps,
|
289 |
+
guidance_scale,
|
290 |
+
controlnet_conditioning_scale,
|
291 |
+
seed,
|
292 |
+
use_hed,
|
293 |
+
use_canny
|
294 |
+
]
|
295 |
+
outputs = [image_slider]
|
296 |
+
run_button.click(
|
297 |
+
fn=randomize_seed_fn,
|
298 |
+
inputs=[seed, randomize_seed],
|
299 |
+
outputs=seed,
|
300 |
+
queue=False,
|
301 |
+
api_name=False,
|
302 |
+
).then(lambda x: None, inputs=None, outputs=image_slider).then(
|
303 |
+
fn=run, inputs=inputs, outputs=outputs
|
304 |
+
)
|
305 |
+
|
306 |
+
demo.queue().launch(show_error=True, ssl_verify=False)
|