import pandas as pd import streamlit as st import numpy as np from matplotlib import pyplot as plt import pickle import sklearn from PIL import Image # Load the saved components with open("dt_model.pkl", "rb") as f: components = pickle.load(f) # Extract the individual components num_imputer = components["num_imputer"] cat_imputer = components["cat_imputer"] encoder = components["encoder"] scaler = components["scaler"] dt_model = components["models"] # Create the app st.set_page_config( layout="wide" ) # Add an image or logo to the app image = Image.open('copofav.jpg') # Open the image file st.image(image) #add app title st.title("SALES PREDICTION APP") # Add some text st.write("Please ENTER the relevant data and CLICK Predict.") # Create the input fields input_data = {} col1,col2,col3 = st.columns(3) with col1: input_data['store_nbr'] = st.slider("Store Number",0,54) input_data['products'] = st.selectbox("Products Family", ['OTHERS', 'CLEANING', 'FOODS', 'STATIONERY', 'GROCERY', 'HARDWARE', 'HOME', 'CLOTHING']) input_data['onpromotion'] =st.number_input("Discount Amt On Promotion",step=1) input_data['state'] = st.selectbox("State", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura', 'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza', 'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja', 'El Oro', 'Esmeraldas', 'Manabi']) with col2: input_data['store_type'] = st.selectbox("Store Type",['D', 'C', 'B', 'E', 'A']) input_data['cluster'] = st.number_input("Cluster",step=1) input_data['dcoilwtico'] = st.number_input("DCOILWTICO",step=1) input_data['year'] = st.number_input("Year to Predict",step=1) with col3: input_data['month'] = st.slider("Month",1,12) input_data['day'] = st.slider("Day",1,31) input_data['dayofweek'] = st.number_input("Day of Week,0=Sunday and 6=Satruday",step=1) input_data['end_month'] = st.selectbox("Is it End of the Month?",['True','False']) # Create a button to make a prediction if st.button("Predict"): # Convert the input data to a pandas DataFrame input_df = pd.DataFrame([input_data]) # categorizing the products food_families = ['BEVERAGES', 'BREAD/BAKERY', 'FROZEN FOODS', 'MEATS', 'PREPARED FOODS', 'DELI','PRODUCE', 'DAIRY','POULTRY','EGGS','SEAFOOD'] home_families = ['HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES'] clothing_families = ['LINGERIE', 'LADYSWARE'] grocery_families = ['GROCERY I', 'GROCERY II'] stationery_families = ['BOOKS', 'MAGAZINES','SCHOOL AND OFFICE SUPPLIES'] cleaning_families = ['HOME CARE', 'BABY CARE','PERSONAL CARE'] hardware_families = ['PLAYERS AND ELECTRONICS','HARDWARE'] others_families = ['AUTOMOTIVE', 'BEAUTY','CELEBRATION', 'LADIESWEAR', 'LAWN AND GARDEN', 'LIQUOR,WINE,BEER', 'PET SUPPLIES'] # Apply the same preprocessing steps as done during training input_df['products'] = np.where(input_df['products'].isin(food_families), 'FOODS', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(home_families), 'HOME', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(clothing_families), 'CLOTHING', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(grocery_families), 'GROCERY', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(stationery_families), 'STATIONERY', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(cleaning_families), 'CLEANING', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(hardware_families), 'HARDWARE', input_df['products']) input_df['products'] = np.where(input_df['products'].isin(others_families), 'OTHERS', input_df['products']) categorical_columns = ['products', 'end_month', 'store_type', 'state'] numerical_columns =['store_nbr','onpromotion','cluster','dcoilwtico','year','month','day','dayofweek'] # Impute missing values input_df_cat = input_df[categorical_columns].copy() input_df_num = input_df[numerical_columns].copy() input_df_cat_imputed = cat_imputer.transform(input_df_cat) input_df_num_imputed = num_imputer.transform(input_df_num) # Encode categorical features input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(), columns=encoder.get_feature_names_out(categorical_columns)) # Scale numerical features input_df_num_scaled = scaler.transform(input_df_num_imputed) input_df_num_sc = pd.DataFrame(input_df_num_scaled, columns=numerical_columns) # Combine encoded categorical features and scaled numerical features input_df_processed = pd.concat([input_df_num_sc, input_df_cat_encoded], axis=1) # Make predictions using the trained model predictions = dt_model.predict(input_df_processed) # Display the predicted sales value to the user st.write("Predicted Sales:", predictions[0])