Spaces:
Runtime error
Runtime error
import gradio as gr | |
import http | |
import ssl | |
import json | |
import warnings | |
warnings.filterwarnings("ignore") | |
def retrieve_api_key(url): | |
context = ssl.create_default_context() | |
context.check_hostname = True | |
conn = http.client.HTTPSConnection(url, context=context) | |
conn.request("GET", "/admin/api-keys/") | |
api_key_response = conn.getresponse() | |
api_keys_data = ( | |
api_key_response.read().decode("utf-8").replace("\n", "").replace("\t", "") | |
) | |
api_keys_json = json.loads(api_keys_data) | |
api_key = api_keys_json[0]["api_key"] | |
conn.close() | |
return api_key | |
def get_benchmark_uids(num_miner,mode): | |
url="test.neuralinternet.ai" | |
api_key = retrieve_api_key(url) | |
context = ssl.create_default_context() | |
context.check_hostname = True | |
conn = http.client.HTTPSConnection(url, context=context) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}", | |
"Endpoint-Version": "2023-05-19", | |
} | |
conn.request("GET", f"/top_miner_uids?n={num_miner}&mode={mode}", headers=headers) | |
miner_response = conn.getresponse() | |
miner_data = ( | |
miner_response.read().decode("utf-8").replace("\n", "").replace("\t", "") | |
) | |
uids = json.loads(miner_data) | |
return uids | |
def retrieve_response(payload): | |
url="d509-65-108-32-175.ngrok-free.app" | |
api_key = retrieve_api_key(url) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {api_key}", | |
"Endpoint-Version": "2023-05-19", | |
} | |
payload = json.dumps(payload) | |
context = ssl.create_default_context() | |
context.check_hostname = True | |
conn = http.client.HTTPSConnection(url, context=context) | |
conn.request("POST", "/chat", payload, headers) | |
init_response = conn.getresponse() | |
init_data = init_response.read().decode("utf-8").replace("\n", "").replace("\t", "") | |
init_json = json.loads(init_data) | |
response_dict = dict() | |
for choice in init_json['choices']: | |
uid = choice['uid'] | |
resp = choice['message']['content'] | |
resp = resp.replace("\n", "").replace("\t", "") | |
response_dict[uid] = resp | |
response_text = '\n\n'.join([f'"{key}": "{value}"' for key, value in response_dict.items()]) | |
return response_text | |
def interface_fn(system_prompt, optn, arg, user_prompt): | |
if len(system_prompt) == 0: | |
system_prompt = "You are an AI Assistant, created by bittensor and powered by NI(Neural Internet). Your task is to provide consise response to user's prompt" | |
messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}] | |
payload = dict() | |
if optn == 'TOP': | |
if int(arg) > 50: | |
arg = 50 | |
payload['top_n'] = int(arg) | |
payload['messages'] = messages | |
response = retrieve_response(payload) | |
return response | |
elif optn == 'BENCHMARK_TextEval': | |
if int(arg) > 50: | |
arg = 50 | |
uids = get_benchmark_uids(int(arg), 'TextEval') | |
payload['uids'] = uids | |
payload['messages'] = messages | |
response = retrieve_response(payload) | |
return response | |
elif optn == 'BENCHMARK_AGIEval': | |
if int(arg) > 50: | |
arg = 50 | |
uids = get_benchmark_uids(int(arg), 'AGIEval') | |
payload['uids'] = uids | |
payload['messages'] = messages | |
response = retrieve_response(payload) | |
return response | |
else: | |
uids = list() | |
if ',' in arg: | |
uids = [int(x) for x in arg.split(',')] | |
else: | |
uids = [arg] | |
payload['uids'] = uids | |
payload['messages'] = messages | |
response = retrieve_response(payload) | |
return response | |
interface = gr.Interface( | |
fn=interface_fn, | |
inputs=[ | |
gr.inputs.Textbox(label="System Prompt", optional=True), | |
gr.inputs.Dropdown(["TOP", "BENCHMARK_TextEval", "BENCHMARK_AGIEval", "UIDs"], label="Select Function"), | |
gr.inputs.Textbox(label="Arguement"), | |
gr.inputs.Textbox(label="Enter your question") | |
], | |
outputs=gr.outputs.Textbox(label="Model Responses"), | |
title="Explore Bittensor Miners", | |
description="Enter parameters as per you want and get response", | |
examples=[["Your task is to provide consise response of user prompts", "TOP", 5, 'What is Bittensor?'] | |
,["Your task is to provide accurate, lengthy response with good lexical flow", "BENCHMARK_TextEval", 5, "What is neural network and how its feeding mechanism works?"], | |
["Act like you're in the technology field for 10+ year and give unbiased opinion", "UIDs", '975,517,906,743,869' , "What are the potential ethical concerns surrounding artificial intelligence and machine learning in healthcare?"]]) | |
interface.launch(enable_queue=True) |