Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from keras.preprocessing.image import img_to_array | |
# Load the pre-trained model | |
model = tf.keras.models.load_model("student.h5") | |
# Define the class names | |
class_names = ["Diger", "MuhammetAliSimsek", "MuserrefSelcukOzdemir", "ZekeriyyaKoroglu"] | |
# Function to preprocess the image for model prediction | |
def preprocess_image(image_path): | |
img = Image.open(image_path).convert("RGB") | |
img = img.resize((224, 224)) # Ensure the image size matches the model input size | |
img_array = img_to_array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array # Normalize the pixel values | |
# Streamlit App | |
st.title("Student Recognition App") | |
# Upload image through Streamlit | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True) | |
# Preprocess the uploaded image | |
input_image = preprocess_image(uploaded_file) | |
# Make prediction using the model | |
predictions = model.predict(input_image) | |
# Get the predicted class | |
predicted_class_index = np.argmax(predictions) | |
predicted_class = class_names[predicted_class_index] | |
# Display the prediction result | |
st.write("Prediction Result:") | |
st.write(f"The person in the image is predicted as: {predicted_class}") | |