Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
# Initialize the
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message: str,
|
@@ -15,7 +37,7 @@ def respond(
|
|
15 |
temperature: float,
|
16 |
top_p: float,
|
17 |
):
|
18 |
-
"""Generate a response for
|
19 |
# Prepare the messages in the correct format for the API
|
20 |
messages = [{"role": "system", "content": system_message}]
|
21 |
|
@@ -30,23 +52,20 @@ def respond(
|
|
30 |
response = ""
|
31 |
|
32 |
# Stream response tokens from the chat completion API
|
33 |
-
for
|
34 |
messages=messages,
|
35 |
max_tokens=max_tokens,
|
36 |
stream=True,
|
37 |
temperature=temperature,
|
38 |
top_p=top_p,
|
39 |
):
|
40 |
-
token =
|
41 |
response += token
|
42 |
yield response
|
43 |
|
44 |
-
|
45 |
-
For information on how to customize the ChatInterface, peruse the Gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
-
"""
|
47 |
-
|
48 |
demo = gr.ChatInterface(
|
49 |
-
respond,
|
50 |
additional_inputs=[
|
51 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
52 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
|
6 |
+
# Replace 'your_huggingface_token' with your actual Hugging Face access token
|
7 |
+
access_token = os.getenv('token')
|
8 |
+
|
9 |
+
# Initialize the tokenizer and model with the Hugging Face access token
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"google/gemma-2b-it",
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
use_auth_token=access_token
|
15 |
+
)
|
16 |
+
model.eval() # Set the model to evaluation mode
|
17 |
+
|
18 |
+
# Initialize the inference client (if needed for other API-based tasks)
|
19 |
+
client = InferenceClient(token=access_token)
|
20 |
+
|
21 |
+
def conversation_predict(input_text):
|
22 |
+
"""Generate a response for single-turn input using the model."""
|
23 |
+
# Tokenize the input text
|
24 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
25 |
+
|
26 |
+
# Generate a response with the model
|
27 |
+
outputs = model.generate(input_ids, max_new_tokens=2048)
|
28 |
+
|
29 |
+
# Decode and return the generated response
|
30 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
def respond(
|
33 |
message: str,
|
|
|
37 |
temperature: float,
|
38 |
top_p: float,
|
39 |
):
|
40 |
+
"""Generate a response for a multi-turn chat conversation."""
|
41 |
# Prepare the messages in the correct format for the API
|
42 |
messages = [{"role": "system", "content": system_message}]
|
43 |
|
|
|
52 |
response = ""
|
53 |
|
54 |
# Stream response tokens from the chat completion API
|
55 |
+
for message_chunk in client.chat_completion(
|
56 |
messages=messages,
|
57 |
max_tokens=max_tokens,
|
58 |
stream=True,
|
59 |
temperature=temperature,
|
60 |
top_p=top_p,
|
61 |
):
|
62 |
+
token = message_chunk["choices"][0]["delta"].get("content", "")
|
63 |
response += token
|
64 |
yield response
|
65 |
|
66 |
+
# Create a Gradio ChatInterface demo
|
|
|
|
|
|
|
67 |
demo = gr.ChatInterface(
|
68 |
+
fn=respond,
|
69 |
additional_inputs=[
|
70 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
71 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|