Dhahlan2000 commited on
Commit
814a015
·
verified ·
1 Parent(s): 08f3fe6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -13
app.py CHANGED
@@ -1,11 +1,33 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- # Initialize the inference client with the model repo
8
- client = InferenceClient("cognitivecomputations/dolphin-2_6-phi-2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message: str,
@@ -15,7 +37,7 @@ def respond(
15
  temperature: float,
16
  top_p: float,
17
  ):
18
- """Generate a response for the chatbot using the InferenceClient."""
19
  # Prepare the messages in the correct format for the API
20
  messages = [{"role": "system", "content": system_message}]
21
 
@@ -30,23 +52,20 @@ def respond(
30
  response = ""
31
 
32
  # Stream response tokens from the chat completion API
33
- for message in client.chat_completion(
34
  messages=messages,
35
  max_tokens=max_tokens,
36
  stream=True,
37
  temperature=temperature,
38
  top_p=top_p,
39
  ):
40
- token = message["choices"][0]["delta"].get("content", "")
41
  response += token
42
  yield response
43
 
44
- """
45
- For information on how to customize the ChatInterface, peruse the Gradio docs: https://www.gradio.app/docs/chatinterface
46
- """
47
-
48
  demo = gr.ChatInterface(
49
- respond,
50
  additional_inputs=[
51
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
52
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
 
6
+ # Replace 'your_huggingface_token' with your actual Hugging Face access token
7
+ access_token = os.getenv('token')
8
+
9
+ # Initialize the tokenizer and model with the Hugging Face access token
10
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ "google/gemma-2b-it",
13
+ torch_dtype=torch.bfloat16,
14
+ use_auth_token=access_token
15
+ )
16
+ model.eval() # Set the model to evaluation mode
17
+
18
+ # Initialize the inference client (if needed for other API-based tasks)
19
+ client = InferenceClient(token=access_token)
20
+
21
+ def conversation_predict(input_text):
22
+ """Generate a response for single-turn input using the model."""
23
+ # Tokenize the input text
24
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
25
+
26
+ # Generate a response with the model
27
+ outputs = model.generate(input_ids, max_new_tokens=2048)
28
+
29
+ # Decode and return the generated response
30
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
31
 
32
  def respond(
33
  message: str,
 
37
  temperature: float,
38
  top_p: float,
39
  ):
40
+ """Generate a response for a multi-turn chat conversation."""
41
  # Prepare the messages in the correct format for the API
42
  messages = [{"role": "system", "content": system_message}]
43
 
 
52
  response = ""
53
 
54
  # Stream response tokens from the chat completion API
55
+ for message_chunk in client.chat_completion(
56
  messages=messages,
57
  max_tokens=max_tokens,
58
  stream=True,
59
  temperature=temperature,
60
  top_p=top_p,
61
  ):
62
+ token = message_chunk["choices"][0]["delta"].get("content", "")
63
  response += token
64
  yield response
65
 
66
+ # Create a Gradio ChatInterface demo
 
 
 
67
  demo = gr.ChatInterface(
68
+ fn=respond,
69
  additional_inputs=[
70
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
71
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),