Spaces:
Running
Running
File size: 13,406 Bytes
af978d7 c4c99cc a7f8412 2acfb1f a7f8412 a10faf8 b701198 a7f8412 19bc86f ee1c031 a7f8412 a7916e8 20d39a9 b701198 ba1be70 a7f8412 ba1be70 a7f8412 a7916e8 b701198 6c8ff63 96b4247 ba1be70 b701198 ba1be70 c4c99cc 20d39a9 ba1be70 20d39a9 c4c99cc 19bc86f 12e25ff 19bc86f 12e25ff 19bc86f a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 494b1fb a7916e8 19bc86f b701198 c4c99cc 20d39a9 c4c99cc 19bc86f a7916e8 19bc86f a7916e8 19bc86f c4c99cc a7f8412 a7916e8 a7f8412 a7916e8 a7f8412 a7916e8 a7f8412 c4c99cc a7f8412 a7916e8 a7f8412 a10faf8 a7f8412 c4c99cc a7f8412 b701198 c4c99cc ba1be70 c4c99cc 12e25ff c4c99cc a7916e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import streamlit as st
import yfinance as yf
import requests
import os
from dotenv import load_dotenv
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.prompts import BaseChatPromptTemplate
from langchain.tools import Tool
from langchain_huggingface import HuggingFacePipeline
from langchain import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.memory import ConversationBufferWindowMemory
from statsmodels.tsa.arima.model import ARIMA
import torch
import re
from typing import List, Union
from datetime import datetime
from lumibot.brokers import Alpaca
from lumibot.backtesting import YahooDataBacktesting
from lumibot.strategies.strategy import Strategy
from alpaca_trade_api import REST
from timedelta import Timedelta
from finbert_utils import estimate_sentiment
# Load environment variables from .env
load_dotenv()
NEWSAPI_KEY = os.getenv("NEWSAPI_KEY")
access_token = os.getenv("API_KEY")
# Check if the access token and API key are present
if not NEWSAPI_KEY or not access_token:
raise ValueError("NEWSAPI_KEY or API_KEY not found in .env file.")
# Alpaca credentials
API_KEY = "PKWJW14IWRJMLJ4CSZ6V"
API_SECRET = "zJOGwUvhYBfYJQRz6jc309PLNfTQ4VcxuygFxxfh"
BASE_URL = "https://paper-api.alpaca.markets/v2"
ALPACA_CREDS = {
"API_KEY": API_KEY,
"API_SECRET": API_SECRET,
"PAPER": True
}
# Initialize the model and tokenizer for the HuggingFace pipeline
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=access_token)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b-it",
torch_dtype=torch.bfloat16,
token=access_token
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
# Define functions for fetching stock data, news, and moving averages
def validate_ticker(ticker):
return ticker.strip().upper()
def fetch_stock_data(ticker):
try:
ticker = ticker.strip().upper()
stock = yf.Ticker(ticker)
hist = stock.history(period="1mo")
if hist.empty:
return {"error": f"No data found for ticker {ticker}"}
return hist.tail(5).to_dict()
except Exception as e:
return {"error": str(e)}
def fetch_stock_news(ticker, NEWSAPI_KEY):
api_url = f"https://newsapi.org/v2/everything?q={ticker}&apiKey={NEWSAPI_KEY}"
response = requests.get(api_url)
if response.status_code == 200:
articles = response.json().get('articles', [])
return [{"title": article['title'], "description": article['description']} for article in articles[:5]]
else:
return [{"error": "Unable to fetch news."}]
def calculate_moving_average(ticker, window=5):
stock = yf.Ticker(ticker)
hist = stock.history(period="1mo")
hist[f"{window}-day MA"] = hist["Close"].rolling(window=window).mean()
return hist[["Close", f"{window}-day MA"]].tail(5)
def analyze_sentiment(news_articles):
sentiment_pipeline = pipeline("sentiment-analysis")
results = [{"title": article["title"],
"sentiment": sentiment_pipeline(article["description"] or article["title"])[0]}
for article in news_articles]
return results
def predict_stock_price(ticker, days=5):
stock = yf.Ticker(ticker)
hist = stock.history(period="6mo")
if hist.empty:
return {"error": f"No data found for ticker {ticker}"}
model = ARIMA(hist["Close"], order=(5, 1, 0))
model_fit = model.fit()
forecast = model_fit.forecast(steps=days)
return forecast.tolist()
def compare_stocks(ticker1, ticker2):
data1 = fetch_stock_data(ticker1)
data2 = fetch_stock_data(ticker2)
if "error" in data1 or "error" in data2:
return {"error": "Could not fetch stock data for comparison."}
comparison = {
ticker1: {"recent_close": data1["Close"][-1]},
ticker2: {"recent_close": data2["Close"][-1]},
}
return comparison
def execute_alpaca_trading():
class MLTrader(Strategy):
def initialize(self, symbol: str = "SPY", cash_at_risk: float = .5):
self.symbol = symbol
self.sleeptime = "24H"
self.last_trade = None
self.cash_at_risk = cash_at_risk
self.api = REST(base_url=BASE_URL, key_id=API_KEY, secret_key=API_SECRET)
def position_sizing(self):
cash = self.get_cash()
last_price = self.get_last_price(self.symbol)
quantity = round(cash * self.cash_at_risk / last_price, 0)
return cash, last_price, quantity
def get_dates(self):
today = self.get_datetime()
three_days_prior = today - Timedelta(days=3)
return today.strftime('%Y-%m-%d'), three_days_prior.strftime('%Y-%m-%d')
def get_sentiment(self):
today, three_days_prior = self.get_dates()
news = self.api.get_news(symbol=self.symbol, start=three_days_prior, end=today)
if not news:
return None, None # No news available
# Extract headlines
news_headlines = [ev.__dict__["_raw"]["headline"] for ev in news]
# Calculate sentiment for each headline
positive_count = 0
negative_count = 0
for headline in news_headlines:
probability, sentiment = estimate_sentiment([headline])
if sentiment == "positive":
positive_count += 1
elif sentiment == "negative":
negative_count += 1
total_articles = len(news_headlines)
positive_percentage = (positive_count / total_articles) * 100 if total_articles else 0
negative_percentage = (negative_count / total_articles) * 100 if total_articles else 0
return positive_percentage, negative_percentage
def on_trading_iteration(self):
cash, last_price, quantity = self.position_sizing()
positive_percentage, negative_percentage = self.get_sentiment()
if positive_percentage is None or negative_percentage is None:
self.log("No sentiment data available, skipping this iteration.")
return
self.log(f"Positive Sentiment: {positive_percentage:.2f}%, Negative Sentiment: {negative_percentage:.2f}%")
if cash > last_price:
if positive_percentage > 60 and negative_percentage < 30: # Example threshold
if self.last_trade == "sell":
self.sell_all()
order = self.create_order(
self.symbol,
quantity,
"buy",
type="bracket",
take_profit_price=last_price * 1.20,
stop_loss_price=last_price * 0.95,
)
self.submit_order(order)
self.last_trade = "buy"
elif negative_percentage > 60 and positive_percentage < 30: # Example threshold
if self.last_trade == "buy":
self.sell_all()
order = self.create_order(
self.symbol,
quantity,
"sell",
type="bracket",
take_profit_price=last_price * 0.8,
stop_loss_price=last_price * 1.05,
)
self.submit_order(order)
self.last_trade = "sell"
start_date = datetime(2021, 1, 1)
end_date = datetime(2024, 10, 1)
broker = Alpaca(ALPACA_CREDS)
strategy = MLTrader(name='mlstrat', broker=broker,
parameters={"symbol": "SPY",
"cash_at_risk": .5})
strategy.backtest(
YahooDataBacktesting,
start_date,
end_date,
parameters={"symbol": "SPY", "cash_at_risk": .5}
)
return "Alpaca trading strategy executed and backtested."
# Define LangChain tools
stock_data_tool = Tool(
name="Stock Data Fetcher",
func=fetch_stock_data,
description="Fetch recent stock data for a valid stock ticker symbol (e.g., AAPL for Apple)."
)
stock_news_tool = Tool(
name="Stock News Fetcher",
func=lambda ticker: fetch_stock_news(ticker, NEWSAPI_KEY),
description="Fetch recent news articles about a stock ticker."
)
moving_average_tool = Tool(
name="Moving Average Calculator",
func=calculate_moving_average,
description="Calculate the moving average of a stock over a 5-day window."
)
sentiment_tool = Tool(
name="News Sentiment Analyzer",
func=lambda ticker: analyze_sentiment(fetch_stock_news(ticker, NEWSAPI_KEY)),
description="Analyze the sentiment of recent news articles about a stock ticker."
)
stock_prediction_tool = Tool(
name="Stock Price Predictor",
func=predict_stock_price,
description="Predict future stock prices for a given ticker based on historical data."
)
stock_comparator_tool = Tool(
name="Stock Comparator",
func=lambda tickers: compare_stocks(*tickers.split(',')),
description="Compare the recent performance of two stocks given their tickers, e.g., 'AAPL,MSFT'."
)
alpaca_trading_tool = Tool(
name="Alpaca Trading Executor",
func=execute_alpaca_trading,
description="Run a trading strategy using Alpaca API and backtest results."
)
tools = [
stock_data_tool,
stock_news_tool,
moving_average_tool,
sentiment_tool,
stock_prediction_tool,
stock_comparator_tool,
alpaca_trading_tool
]
# Set up a prompt template with history
template_with_history = """You are SearchGPT, a professional search engine who provides informative answers to users. Answer the following questions as best you can. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to give detailed, informative answers
Previous conversation history:
{history}
New question: {input}
{agent_scratchpad}"""
# Set up the prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
template: str
tools: List[Tool]
def format_messages(self, **kwargs) -> str:
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
kwargs["agent_scratchpad"] = thoughts
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
formatted = self.template.format(**kwargs)
return [HumanMessage(content=formatted)]
prompt_with_history = CustomPromptTemplate(
template=template_with_history,
tools=tools,
input_variables=["input", "intermediate_steps", "history"]
)
# Custom output parser
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
if "Final Answer:" in llm_output:
return AgentFinish(
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
output_parser = CustomOutputParser()
# Initialize HuggingFace pipeline
llm = HuggingFacePipeline(pipeline=pipe)
# LLM chain
llm_chain = LLMChain(llm=llm, prompt=prompt_with_history)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
memory = ConversationBufferWindowMemory(k=2)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
# Streamlit app
st.title("Trading Helper Agent")
query = st.text_input("Enter your query:")
if st.button("Submit"):
if query:
st.write("Debug: User Query ->", query)
with st.spinner("Processing..."):
try:
# Run the agent and get the response
response = agent_executor.run(query) # Correct method is `run()`
st.success("Response:")
st.write(response)
except Exception as e:
st.error(f"An error occurred: {e}")
# Log the full LLM
|