DiGuaQiu's picture
Create utils.py
fb0ea94 verified
raw
history blame
4.06 kB
import numpy as np
import SimpleITK as sitk
channels = [
"background",
"spleen",
"right_kidney",
"left_kidney",
"gallbladder",
"liver",
"stomach",
"pancreas",
"right_adrenal_gland",
"left_adrenal_gland",
"left_lung",
"right_lung",
"heart",
"aorta",
"inferior_vena_cava",
"portal_vein_and_splenic_vein",
"left_iliac_artery",
"right_iliac_artery",
"left_iliac_vena",
"right_iliac_vena",
"esophagus",
"small_bowel",
"duodenum",
"colon",
"urinary_bladder",
"spine",
"sacrum",
"left_hip",
"right_hip",
"left_femur",
"right_femur",
"left_autochthonous_muscle",
"right_autochthonous_muscle",
"left_iliopsoas_muscle",
"right_iliopsoas_muscle",
"left_gluteus_maximus",
"right_gluteus_maximus",
"left_gluteus_medius",
"right_gluteus_medius",
"left_gluteus_minimus",
"right_gluteus_minimus",
]
def make_isotropic(image, interpolator=sitk.sitkLinear, spacing=None):
"""
Many file formats (e.g. jpg, png,...) expect the pixels to be isotropic, same
spacing for all axes. Saving non-isotropic data in these formats will result in
distorted images. This function makes an image isotropic via resampling, if needed.
Args:
image (SimpleITK.Image): Input image.
interpolator: By default the function uses a linear interpolator. For
label images one should use the sitkNearestNeighbor interpolator
so as not to introduce non-existant labels.
spacing (float): Desired spacing. If none given then use the smallest spacing from
the original image.
Returns:
SimpleITK.Image with isotropic spacing which occupies the same region in space as
the input image.
"""
original_spacing = image.GetSpacing()
# Image is already isotropic, just return a copy.
if all(spc == original_spacing[0] for spc in original_spacing):
return sitk.Image(image)
# Make image isotropic via resampling.
original_size = image.GetSize()
if spacing is None:
spacing = min(original_spacing)
new_spacing = [spacing] * image.GetDimension()
new_size = [int(round(osz * ospc / spacing)) for osz, ospc in zip(original_size, original_spacing)]
return sitk.Resample(
image,
new_size,
sitk.Transform(),
interpolator,
image.GetOrigin(),
new_spacing,
image.GetDirection(),
0, # default pixel value
image.GetPixelID(),
)
def label_mapper(seg):
labels = []
for _class in np.unique(seg):
if _class == 0:
continue
labels.append((seg == _class, channels[_class]))
return labels
def sitk2numpy(img, normalize=False):
img = sitk.DICOMOrient(img, "LPS")
# img = make_isotropic(img)
img = sitk.GetArrayFromImage(img)
if normalize:
minval, maxval = np.min(img), np.max(img)
img = ((img - minval) / (maxval - minval)).clip(0, 1) * 255
img = img.astype(np.uint8)
return img
def read_image(path, normalize=False):
img = sitk.ReadImage(path)
return sitk2numpy(img, normalize)
def display(image, seg=None, _slice=50):
# Image
if image is None or (isinstance(image, list) and len(image) == 0):
return None
if isinstance(image, list):
image = image[-1]
x = int(_slice * (image.shape[0] / 100))
image = image[x, :, :]
# Segmentation
if seg is None or (isinstance(seg, list) and len(seg) == 0):
seg = []
else:
if isinstance(seg, list):
seg = seg[-1]
seg = label_mapper(seg[x, :, :])
return image, seg
def read_and_display(path, image_state, seg_state):
image_state.clear()
seg_state.clear()
if path is not None:
image = read_image(path, normalize=True)
image_state.append(image)
return display(image), image_state, seg_state
else:
return None, image_state, seg_state