Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,48 @@
|
|
1 |
-
from transformers import
|
2 |
-
import
|
3 |
-
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# 加载指令模型
|
5 |
+
model = AutoModelForCausalLM.from_pretrained(
|
6 |
+
"MediaTek-Research/Breeze-7B-Instruct-v1_0",
|
7 |
+
device_map="auto",
|
8 |
+
torch_dtype=torch.bfloat16,
|
9 |
+
)
|
10 |
+
|
11 |
+
# 加载基础模型(如果需要)
|
12 |
+
# model_base = AutoModelForCausalLM.from_pretrained(
|
13 |
+
# "MediaTek-Research/Breeze-7B-Base-v1_0",
|
14 |
+
# device_map="auto",
|
15 |
+
# torch_dtype=torch.bfloat16,
|
16 |
+
# )
|
17 |
+
|
18 |
+
# 加载分词器
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
|
20 |
+
|
21 |
+
# 定义SYS_PROMPT
|
22 |
+
SYS_PROMPT = "You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan."
|
23 |
+
|
24 |
+
# 定义聊天内容
|
25 |
+
chat = [
|
26 |
+
{"role": "user", "content": "你好,請問你可以完成什麼任務?"},
|
27 |
+
{"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
|
28 |
+
{"role": "user", "content": "太棒了!"},
|
29 |
+
]
|
30 |
+
|
31 |
+
# 应用聊天模板
|
32 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
|
33 |
+
full_prompt = f"<s>{SYS_PROMPT} [INST] {prompt} [/INST]"
|
34 |
+
|
35 |
+
# 生成文本
|
36 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
37 |
+
outputs = model.generate(
|
38 |
+
inputs["input_ids"],
|
39 |
+
max_new_tokens=128,
|
40 |
+
top_p=0.95,
|
41 |
+
top_k=50,
|
42 |
+
repetition_penalty=1.1,
|
43 |
+
temperature=0.7,
|
44 |
+
)
|
45 |
+
|
46 |
+
# 解码输出
|
47 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
print(generated_text)
|