Spaces:
Paused
Paused
from threading import Thread | |
from typing import Iterator | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation.utils import GenerationConfig | |
model_id = 'baichuan-inc/Baichuan2-13B-Chat' | |
if torch.cuda.is_available(): | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
# device_map='auto', | |
torch_dtype=torch.float16, | |
trust_remote_code=True | |
) | |
model = model.quantize(4).cuda() | |
model.generation_config = GenerationConfig.from_pretrained(model_id) | |
else: | |
model = None | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
use_fast=False, | |
trust_remote_code=True | |
) | |
def run( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 1.0, | |
top_p: float = 0.95, | |
top_k: int = 5 | |
) -> Iterator[str]: | |
model.generation_config.max_new_tokens = max_new_tokens | |
model.generation_config.temperature = temperature | |
model.generation_config.top_p = top_p | |
model.generation_config.top_k = top_k | |
history = [] | |
result="" | |
for i in chat_history: | |
history.append({"role": "user", "content": i[0]}) | |
history.append({"role": "assistant", "content": i[1]}) | |
print(history) | |
history.append({"role": "user", "content": message}) | |
for response in model.chat( | |
tokenizer, | |
history, | |
# stream=True, | |
): | |
result = result + response | |
yield result | |