#!/usr/bin/env python from __future__ import annotations import os import random import time import gradio as gr import numpy as np import PIL.Image from huggingface_hub import snapshot_download from diffusers import DiffusionPipeline from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline import os from tqdm import tqdm import gradio_user_history as gr_user_history from concurrent.futures import ThreadPoolExecutor import uuid DESCRIPTION = '''# Latent Consistency Model OpenVINO CPU TAESD Based on [Latency Consistency Model OpenVINO CPU](https://huggingface.co/spaces/deinferno/Latent_Consistency_Model_OpenVino_CPU) HF space Converted from [SoteMix](https://huggingface.co/Disty0/SoteMix) to [LCM_SoteMix](https://huggingface.co/Disty0/LCM_SoteMix) and then to OpenVINO This model is for Anime art style. Slower but higher quality version with Full VAE: [LCM_SoteMix_OpenVINO_CPU_Space](https://huggingface.co/spaces/Disty0/LCM_SoteMix_OpenVINO_CPU_Space) [LCM Project page](https://latent-consistency-models.github.io)
Running on a Dual Core CPU with OpenVINO Acceleration
''' MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" model_id = "Disty0/LCM_SoteMix" batch_size = -1 width = int(os.getenv("IMAGE_WIDTH", "512")) height = int(os.getenv("IMAGE_HEIGHT", "512")) num_images = int(os.getenv("NUM_IMAGES", "1")) guidance_scale = float(os.getenv("GUIDANCE_SCALE", "1.0")) class CustomOVModelVaeDecoder(OVModelVaeDecoder): def __init__( self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, ): super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""}) # Inject TAESD taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) pipe.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images) pipe.compile() def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): unique_name = str(uuid.uuid4()) + '.png' img.save(unique_name) gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata) return unique_name def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): paths = [] with ThreadPoolExecutor() as executor: paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array))) return paths def generate( prompt: str, negative_prompt: str, seed: int = 0, num_inference_steps: int = 4, randomize_seed: bool = False, progress = gr.Progress(track_tqdm=True), profile: gr.OAuthProfile | None = None, ) -> PIL.Image.Image: global batch_size global width global height global num_images global guidance_scale seed = randomize_seed_fn(seed, randomize_seed) np.random.seed(seed) start_time = time.time() result = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, output_type="pil", ).images paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps}) print(time.time() - start_time) return paths, seed examples = [ "masterpiece, best quality, highres, 1girl, solo,", "masterpiece, best quality, highres, 1girl, solo, pov, scenery, wind, petals, rim lighting, shrine, lens flare, light scatter, depth of field, lens refraction,", "masterpiece, best quality, highres, 1girl, solo, scenery, wind, petals, rim lighting, shrine, lens flare, light scatter, depth of field, lens refraction, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater,", "masterpiece, best quality, highres, 1girl, solo, supernova, abstract, abstract background, bloom, swirling lights, light particles, fire, galaxy, floating, romanticized, blush, looking at viewer, dark red hair, long hair, blue eyes, straight hair, cat ears, medium breasts, mature female, white sweater,", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, value="masterpiece, best quality, highres, 1girl, solo,", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ) with gr.Accordion("Advanced options", open=False): with gr.Row(): negative_prompt = gr.Text( label="Negative Prompt", max_lines=1, value="worst quality, low quality, lowres, monochrome, realistic,", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True ) randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4, ) with gr.Accordion("Past generations", open=False): gr_user_history.render() gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, seed, num_inference_steps, randomize_seed ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(api_open=False) # demo.queue(max_size=20).launch() demo.launch()