erwold
Initial Commit
3307da6
raw
history blame
17.7 kB
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
import os
# 设置环境变量,强制禁用 accelerate 的显存管理
os.environ["ACCELERATE_USE_MEMORY_EFFICIENT_ATTENTION"] = "false"
os.environ["ACCELERATE_DISABLE_MEMORY_EFFICIENT_ATTENTION"] = "1"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,garbage_collection_threshold:0.6,max_split_size_mb:512"
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
# Add aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
logger.info("Starting model loading...")
# 3. 显式设置 PyTorch 缓存分配器的行为
torch.cuda.set_per_process_memory_fraction(0.95) # 允许使用95%的显存
torch.cuda.max_memory_allocated = lambda *args, **kwargs: 0 # 忽略已分配内存的限制
# Load FLUX components
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder").to(self.dtype).to(self.device)
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2").to(self.dtype).to(self.device)
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
# Load VAE and transformer
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae").to(self.dtype).to(self.device)
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer").to(self.dtype).to(self.device)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
# Load Qwen2VL components
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl").to(self.dtype).to(self.device)
# Load connector
connector = Qwen2Connector().to(self.dtype).to(self.device)
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
# Move state dict to dtype before loading
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
connector = connector.to(self.device)
# Load T5 embedder
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
# Move state dict to dtype before loading
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
self.t5_context_embedder.load_state_dict(t5_embedder_state)
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
# Set models to eval mode
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
model.requires_grad_(False)
model.eval()
logger.info("All models loaded successfully")
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
# Initialize processor and pipeline
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def resize_image(self, img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
# [Previous methods remain unchanged...]
def process_image(self, image):
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
with torch.no_grad():
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
return image_hidden_state, image_grid_thw
def compute_t5_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = prompt_embeds.to(dtype=self.dtype, device=self.device)
prompt_embeds = self.t5_context_embedder(prompt_embeds)
return prompt_embeds
def compute_text_embeddings(self, prompt=""):
with torch.no_grad():
text_inputs = self.models['tokenizer'](
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder'](
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output.to(self.dtype)
return pooled_prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
try:
logger.info(f"Starting generation with prompt: {prompt}, guidance_scale: {guidance_scale}, steps: {num_inference_steps}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
self.load_models()
logger.info("Models loaded successfully")
# Get dimensions from aspect ratio
if aspect_ratio not in ASPECT_RATIOS:
raise ValueError(f"Invalid aspect ratio. Choose from {list(ASPECT_RATIOS.keys())}")
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
# Process input image
try:
input_image = self.resize_image(input_image)
logger.info(f"Input image resized to: {input_image.size}")
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
logger.info("Input image processed successfully")
except Exception as e:
raise RuntimeError(f"Error processing input image: {str(e)}")
try:
pooled_prompt_embeds = self.compute_text_embeddings("")
logger.info("Base text embeddings computed")
# Get T5 embeddings if prompt is provided
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
logger.info("T5 prompt embeddings computed")
except Exception as e:
raise RuntimeError(f"Error computing embeddings: {str(e)}")
# Generate images
try:
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Images generated successfully")
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
padding: 0 20px;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""
<div class="header">
# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Input Section
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1",
info="Choose aspect ratio for generated images"
)
submit_btn = gr.Button(
"🎨 Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
error_message = gr.Textbox(visible=False)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- 📸 Upload any image to get started
- 💡 Add an optional text prompt to guide the generation
- 🎯 Adjust guidance scale to control prompt influence
- ⚙️ Increase steps for higher quality
- 🎲 Use seeds for reproducible results
""")
# Set up the generation function
def generate_with_error_handling(*args):
try:
logger.info("Starting image generation with args: %s", str(args))
# 输入参数验证
input_image, prompt, guidance, steps, num_images, seed, aspect_ratio = args
logger.info(f"Input validation - Image: {type(input_image)}, Prompt: '{prompt}', "
f"Guidance: {guidance}, Steps: {steps}, Num Images: {num_images}, "
f"Seed: {seed}, Aspect Ratio: {aspect_ratio}")
if input_image is None:
raise ValueError("No input image provided")
gr.Info("Starting image generation...")
results = interface.generate(*args)
logger.info("Generation completed successfully")
gr.Info("Generation complete!")
return [results, None]
except Exception as e:
error_msg = str(e)
logger.error(f"Error in generate_with_error_handling: {error_msg}", exc_info=True)
return [None, error_msg]
submit_btn.click(
fn=generate_with_error_handling,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[
output_gallery,
error_message
],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Listen on all network interfaces
server_port=7860, # Use a specific port
share=False # Disable public URL sharing
)