Commit
·
fac857d
0
Parent(s):
initial commit
Browse files- .gitattributes +35 -0
- README.md +12 -0
- app.py +248 -0
- configs/prediction/default.yaml +24 -0
- requirements.txt +20 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Lama
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from saicinpainting.evaluation.utils import move_to_device
|
7 |
+
from saicinpainting.evaluation.refinement import refine_predict
|
8 |
+
from saicinpainting.evaluation.data import pad_img_to_modulo
|
9 |
+
from saicinpainting.training.trainers import load_checkpoint
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import yaml
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from torch.utils.data._utils.collate import default_collate
|
16 |
+
import os
|
17 |
+
#from gradio_imageslider import ImageSlider
|
18 |
+
import requests
|
19 |
+
import zipfile
|
20 |
+
import os
|
21 |
+
|
22 |
+
# URL of the file to download
|
23 |
+
url = "https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip"
|
24 |
+
|
25 |
+
# Local filename to save the downloaded file
|
26 |
+
local_filename = "big-lama.zip"
|
27 |
+
|
28 |
+
# Directory to extract the files into
|
29 |
+
extract_dir = "big-lama"
|
30 |
+
|
31 |
+
# Check if the extracted directory already exists
|
32 |
+
if os.path.exists(extract_dir):
|
33 |
+
print(f"The directory '{extract_dir}' already exists. Skipping download and extraction.")
|
34 |
+
else:
|
35 |
+
# Check if the zip file already exists
|
36 |
+
if not os.path.exists(local_filename):
|
37 |
+
# Download the file
|
38 |
+
with requests.get(url, stream=True) as response:
|
39 |
+
response.raise_for_status()
|
40 |
+
with open(local_filename, 'wb') as f:
|
41 |
+
for chunk in response.iter_content(chunk_size=8192):
|
42 |
+
f.write(chunk)
|
43 |
+
print(f"Downloaded '{local_filename}' successfully.")
|
44 |
+
else:
|
45 |
+
print(f"The file '{local_filename}' already exists. Skipping download.")
|
46 |
+
|
47 |
+
# Unzip the file
|
48 |
+
with zipfile.ZipFile(local_filename, 'r') as zip_ref:
|
49 |
+
zip_ref.extractall()
|
50 |
+
print(f"Extracted '{local_filename}' into '{extract_dir}' successfully.")
|
51 |
+
|
52 |
+
# Optionally, remove the zip file after extraction
|
53 |
+
os.remove(local_filename)
|
54 |
+
print(f"Removed '{local_filename}' after extraction.")
|
55 |
+
|
56 |
+
generator = torch.Generator(device="cuda").manual_seed(42)
|
57 |
+
|
58 |
+
size = (1024, 1024)
|
59 |
+
|
60 |
+
|
61 |
+
def image_preprocess(image: Image, mode="RGB", return_orig=False):
|
62 |
+
img = np.array(image.convert(mode))
|
63 |
+
if img.ndim == 3:
|
64 |
+
img = np.transpose(img, (2, 0, 1))
|
65 |
+
out_img = img.astype("float32") / 255
|
66 |
+
if return_orig:
|
67 |
+
return out_img, img
|
68 |
+
else:
|
69 |
+
return out_img
|
70 |
+
|
71 |
+
|
72 |
+
def infer(prompt, image):
|
73 |
+
source = image["background"].convert("RGB").resize(size)
|
74 |
+
|
75 |
+
mask = image["layers"][0]
|
76 |
+
|
77 |
+
mask = mask.point(lambda p: p > 0 and 255).split()[3]
|
78 |
+
mask.convert("RGB")
|
79 |
+
|
80 |
+
# binary_mask = mask.point(lambda p: 255 if p > 0 else 0)
|
81 |
+
# inverted_mask = ImageChops.invert(binary_mask)
|
82 |
+
|
83 |
+
# alpha_image = Image.new("RGB", source.size, (0, 0, 0))
|
84 |
+
# cnet_image = Image.composite(source, alpha_image, inverted_mask)
|
85 |
+
|
86 |
+
device = torch.device("cpu")
|
87 |
+
|
88 |
+
predict_config_path = "/home/naumov/lama_predict/configs/prediction/default.yaml"
|
89 |
+
|
90 |
+
with open(predict_config_path, "r") as f:
|
91 |
+
predict_config = OmegaConf.create(yaml.safe_load(f))
|
92 |
+
|
93 |
+
train_config_path = os.path.join(predict_config.model.path, "config.yaml")
|
94 |
+
with open(train_config_path, "r") as f:
|
95 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
96 |
+
|
97 |
+
train_config.training_model.predict_only = True
|
98 |
+
train_config.visualizer.kind = "noop"
|
99 |
+
|
100 |
+
checkpoint_path = os.path.join(
|
101 |
+
predict_config.model.path, "models", predict_config.model.checkpoint
|
102 |
+
)
|
103 |
+
|
104 |
+
model = load_checkpoint(
|
105 |
+
train_config, checkpoint_path, strict=False, map_location="cpu"
|
106 |
+
)
|
107 |
+
model.freeze()
|
108 |
+
if not predict_config.get("refine", False):
|
109 |
+
model.to(device)
|
110 |
+
|
111 |
+
img = image_preprocess(source, mode="RGB")
|
112 |
+
mask = image_preprocess(mask, mode="L")
|
113 |
+
|
114 |
+
result = dict(image=img, mask=mask[None, ...])
|
115 |
+
|
116 |
+
if (
|
117 |
+
predict_config.dataset.pad_out_to_modulo is not None
|
118 |
+
and predict_config.dataset.pad_out_to_modulo > 1
|
119 |
+
):
|
120 |
+
result["unpad_to_size"] = result["image"].shape[1:]
|
121 |
+
result["image"] = pad_img_to_modulo(
|
122 |
+
result["image"], predict_config.dataset.pad_out_to_modulo
|
123 |
+
)
|
124 |
+
result["mask"] = pad_img_to_modulo(
|
125 |
+
result["mask"], predict_config.dataset.pad_out_to_modulo
|
126 |
+
)
|
127 |
+
|
128 |
+
batch = default_collate([result])
|
129 |
+
if predict_config.get("refine", False):
|
130 |
+
assert "unpad_to_size" in batch, "Unpadded size is required for the refinement"
|
131 |
+
# image unpadding is taken care of in the refiner, so that output image
|
132 |
+
# is same size as the input image
|
133 |
+
cur_res = refine_predict(batch, model, **predict_config.refiner)
|
134 |
+
cur_res = cur_res[0].permute(1, 2, 0).detach().cpu().numpy()
|
135 |
+
else:
|
136 |
+
with torch.no_grad():
|
137 |
+
batch = move_to_device(batch, device)
|
138 |
+
batch["mask"] = (batch["mask"] > 0) * 1
|
139 |
+
batch = model(batch)
|
140 |
+
cur_res = (
|
141 |
+
batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
|
142 |
+
)
|
143 |
+
unpad_to_size = batch.get("unpad_to_size", None)
|
144 |
+
if unpad_to_size is not None:
|
145 |
+
orig_height, orig_width = unpad_to_size
|
146 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
147 |
+
|
148 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
|
149 |
+
|
150 |
+
yield cur_res
|
151 |
+
|
152 |
+
|
153 |
+
def clear_result():
|
154 |
+
return gr.update(value=None)
|
155 |
+
|
156 |
+
|
157 |
+
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
158 |
+
"""
|
159 |
+
prefix = ""
|
160 |
+
|
161 |
+
title = f"""
|
162 |
+
<div class="main-div">
|
163 |
+
<div>
|
164 |
+
<h1>Small Stable Diffusion V0</h1>
|
165 |
+
</div>
|
166 |
+
<p>
|
167 |
+
Demo for <a href="https://huggingface.co/OFA-Sys/small-stable-diffusion-v0">Small Stable Diffusion V0</a> Stable Diffusion model.<br>
|
168 |
+
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
|
169 |
+
</p>
|
170 |
+
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/small-stable-diffusion-v0/settings'>Settings</a></b>"} after duplicating the space<br><br>
|
171 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/small-stable-diffusion-v0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
172 |
+
</div>
|
173 |
+
"""
|
174 |
+
|
175 |
+
with gr.Blocks(css=css) as demo:
|
176 |
+
gr.HTML(title)
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Row():
|
179 |
+
with gr.Column():
|
180 |
+
prompt = gr.Textbox(
|
181 |
+
label="Prompt",
|
182 |
+
info="Describe what to inpaint the mask with",
|
183 |
+
lines=3,
|
184 |
+
)
|
185 |
+
with gr.Column():
|
186 |
+
with gr.Row():
|
187 |
+
with gr.Column():
|
188 |
+
run_button = gr.Button("Generate")
|
189 |
+
with gr.Row():
|
190 |
+
input_image = gr.ImageMask(
|
191 |
+
type="pil",
|
192 |
+
label="Input Image",
|
193 |
+
crop_size=(1024, 1024),
|
194 |
+
layers=False,
|
195 |
+
height=712,
|
196 |
+
width=712
|
197 |
+
)
|
198 |
+
|
199 |
+
result = gr.Image(
|
200 |
+
interactive=False,
|
201 |
+
label="Generated Image",
|
202 |
+
)
|
203 |
+
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
204 |
+
|
205 |
+
def use_output_as_input(output_image):
|
206 |
+
return gr.update(value=output_image)
|
207 |
+
|
208 |
+
use_as_input_button.click(
|
209 |
+
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
210 |
+
)
|
211 |
+
|
212 |
+
run_button.click(
|
213 |
+
fn=clear_result,
|
214 |
+
inputs=None,
|
215 |
+
outputs=result,
|
216 |
+
).then(
|
217 |
+
fn=lambda: gr.update(visible=False),
|
218 |
+
inputs=None,
|
219 |
+
outputs=use_as_input_button,
|
220 |
+
).then(
|
221 |
+
fn=infer,
|
222 |
+
inputs=[prompt, input_image],
|
223 |
+
outputs=result,
|
224 |
+
).then(
|
225 |
+
fn=lambda: gr.update(visible=True),
|
226 |
+
inputs=None,
|
227 |
+
outputs=use_as_input_button,
|
228 |
+
)
|
229 |
+
|
230 |
+
prompt.submit(
|
231 |
+
fn=clear_result,
|
232 |
+
inputs=None,
|
233 |
+
outputs=result,
|
234 |
+
).then(
|
235 |
+
fn=lambda: gr.update(visible=False),
|
236 |
+
inputs=None,
|
237 |
+
outputs=use_as_input_button,
|
238 |
+
).then(
|
239 |
+
fn=infer,
|
240 |
+
inputs=[prompt, input_image],
|
241 |
+
outputs=result,
|
242 |
+
).then(
|
243 |
+
fn=lambda: gr.update(visible=True),
|
244 |
+
inputs=None,
|
245 |
+
outputs=use_as_input_button,
|
246 |
+
)
|
247 |
+
|
248 |
+
demo.launch()
|
configs/prediction/default.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
indir: no # to be overriden in CLI
|
2 |
+
outdir: no # to be overriden in CLI
|
3 |
+
|
4 |
+
model:
|
5 |
+
path: big-lama # to be overriden in CLI
|
6 |
+
checkpoint: best.ckpt
|
7 |
+
|
8 |
+
dataset:
|
9 |
+
kind: default
|
10 |
+
img_suffix: .png
|
11 |
+
pad_out_to_modulo: 8
|
12 |
+
|
13 |
+
device: cuda
|
14 |
+
out_key: inpainted
|
15 |
+
|
16 |
+
refine: False # refiner will only run if this is True
|
17 |
+
refiner:
|
18 |
+
gpu_ids: 0,1 # the GPU ids of the machine to use. If only single GPU, use: "0,"
|
19 |
+
modulo: ${dataset.pad_out_to_modulo}
|
20 |
+
n_iters: 15 # number of iterations of refinement for each scale
|
21 |
+
lr: 0.002 # learning rate
|
22 |
+
min_side: 512 # all sides of image on all scales should be >= min_side / sqrt(2)
|
23 |
+
max_scales: 3 # max number of downscaling scales for the image-mask pyramid
|
24 |
+
px_budget: 1800000 # pixels budget. Any image will be resized to satisfy height*width <= px_budget
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pyyaml
|
2 |
+
tqdm
|
3 |
+
numpy
|
4 |
+
easydict==1.9.0
|
5 |
+
scikit-image==0.17.2
|
6 |
+
scikit-learn==0.24.2
|
7 |
+
opencv-python
|
8 |
+
tensorflow
|
9 |
+
joblib
|
10 |
+
matplotlib
|
11 |
+
pandas
|
12 |
+
albumentations==0.5.2
|
13 |
+
hydra-core==1.1.0
|
14 |
+
pytorch-lightning==1.2.9
|
15 |
+
tabulate
|
16 |
+
kornia==0.5.0
|
17 |
+
webdataset
|
18 |
+
packaging
|
19 |
+
scikit-learn==0.24.2
|
20 |
+
wldhx.yadisk-direct
|