Spaces:
Runtime error
Runtime error
Dorjzodovsuren
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
# """
|
5 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
# """
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
# def respond(
|
11 |
+
# message,
|
12 |
+
# history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
+
# ):
|
18 |
+
# messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# for val in history:
|
21 |
+
# if val[0]:
|
22 |
+
# messages.append({"role": "user", "content": val[0]})
|
23 |
+
# if val[1]:
|
24 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
# messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
# response = ""
|
29 |
+
|
30 |
+
# for message in client.chat_completion(
|
31 |
+
# messages,
|
32 |
+
# max_tokens=max_tokens,
|
33 |
+
# stream=True,
|
34 |
+
# temperature=temperature,
|
35 |
+
# top_p=top_p,
|
36 |
+
# ):
|
37 |
+
# token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
# response += token
|
40 |
+
# yield response
|
41 |
+
|
42 |
+
|
43 |
+
# """
|
44 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
# """
|
46 |
+
# demo = gr.ChatInterface(
|
47 |
+
# respond,
|
48 |
+
# additional_inputs=[
|
49 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
# gr.Slider(
|
53 |
+
# minimum=0.1,
|
54 |
+
# maximum=1.0,
|
55 |
+
# value=0.95,
|
56 |
+
# step=0.05,
|
57 |
+
# label="Top-p (nucleus sampling)",
|
58 |
+
# ),
|
59 |
+
# ],
|
60 |
+
# )
|
61 |
+
|
62 |
+
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# demo.launch()
|
65 |
+
|
66 |
+
import torch
|
67 |
import gradio as gr
|
68 |
+
from threading import Thread
|
69 |
+
from peft import PeftModel, PeftConfig
|
70 |
+
from unsloth import FastLanguageModel
|
71 |
+
from transformers import TextStreamer
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
73 |
+
|
74 |
+
max_seq_length = 1024
|
75 |
+
dtype = torch.float16
|
76 |
+
load_in_4bit = True
|
77 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
78 |
+
model_name = "Dorjzodovsuren/Mongolian_Llama3-v0.1",
|
79 |
+
max_seq_length = max_seq_length,
|
80 |
+
dtype = dtype,
|
81 |
+
load_in_4bit = load_in_4bit,
|
82 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
86 |
+
|
87 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
88 |
+
|
89 |
+
### Instruction:
|
90 |
+
{}
|
91 |
+
|
92 |
+
### Input:
|
93 |
+
{}
|
94 |
+
|
95 |
+
### Response:
|
96 |
+
{}"""
|
97 |
+
|
98 |
+
|
99 |
+
# Enable native 2x faster inference
|
100 |
+
FastLanguageModel.for_inference(model)
|
101 |
+
|
102 |
+
# Create a text streamer
|
103 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=False,skip_special_tokens=True)
|
104 |
+
|
105 |
+
# Get the device based on GPU availability
|
106 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
107 |
+
|
108 |
+
# Move model into device
|
109 |
+
model = model.to(device)
|
110 |
+
|
111 |
+
class StopOnTokens(StoppingCriteria):
|
112 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
113 |
+
stop_ids = [29, 0]
|
114 |
+
for stop_id in stop_ids:
|
115 |
+
if input_ids[0][-1] == stop_id:
|
116 |
+
return True
|
117 |
+
return False
|
118 |
+
|
119 |
+
# Current implementation does not support conversation based on history.
|
120 |
+
# Highly recommend to experiment on various hyper parameters to compare qualities.
|
121 |
+
def predict(message, history):
|
122 |
+
stop = StopOnTokens()
|
123 |
+
messages = alpaca_prompt.format(
|
124 |
+
message,
|
125 |
+
"",
|
126 |
+
"",
|
127 |
+
)
|
128 |
+
|
129 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
130 |
+
|
131 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
132 |
+
generate_kwargs = dict(
|
133 |
+
model_inputs,
|
134 |
+
streamer=streamer,
|
135 |
+
max_new_tokens=1024,
|
136 |
+
top_p=0.95,
|
137 |
+
temperature=0.001,
|
138 |
+
repetition_penalty=1.1,
|
139 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
140 |
+
)
|
141 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
142 |
+
t.start()
|
143 |
+
|
144 |
+
partial_message = ""
|
145 |
+
for new_token in streamer:
|
146 |
+
if new_token != '<':
|
147 |
+
partial_message += new_token
|
148 |
+
yield partial_message
|
149 |
|
150 |
+
gr.ChatInterface(predict).launch(show_api=True)
|
|