File size: 15,405 Bytes
8d959a7 ce24f5e 949a27b 8d959a7 ce24f5e 8d959a7 ce24f5e f2a2029 80b2ed2 ce24f5e a6028d3 2df63ef ce24f5e 8d959a7 45f77dd ce24f5e 8d959a7 a6028d3 ce24f5e 8d959a7 a6028d3 ce24f5e a6028d3 ce24f5e 8d959a7 ce24f5e 8d959a7 ce24f5e f2a2029 80b2ed2 f2a2029 ce24f5e 45f77dd ce24f5e 45f77dd ce24f5e 80b2ed2 ce24f5e 8d959a7 a6028d3 8d959a7 ce24f5e 8d959a7 ce24f5e 949a27b ce24f5e 8d959a7 ce24f5e f2a2029 949a27b b164725 949a27b f2a2029 2df63ef ce24f5e f2a2029 ce24f5e 949a27b f2a2029 ce24f5e a6028d3 f2a2029 ce24f5e f2a2029 ce24f5e f2a2029 ce24f5e a6028d3 ce24f5e a6028d3 949a27b b164725 937f44f 80b2ed2 937f44f 949a27b b164725 949a27b a6028d3 8d959a7 949a27b b164725 937f44f b164725 949a27b f2a2029 2df63ef 8d959a7 902dd0a f2a2029 a6028d3 8d959a7 ce24f5e 2df63ef 8d959a7 ce24f5e a6028d3 ce24f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import math
import os
import random
import signal
import sys
from pathlib import Path
import bitsandbytes as bnb
import fire
import torch
import transformers
import yaml
from attrdict import AttrDefault
from datasets import load_dataset, IterableDataset, Dataset, load_from_disk
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_int8_training,
PeftModel,
)
from torch import nn
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer
# add src to the pythonpath so we don't need to pip install this
from transformers.trainer_pt_utils import get_parameter_names
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
src_dir = os.path.join(project_root, "src")
sys.path.insert(0, src_dir)
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
ShareGPTPromptTokenizingStrategy,
LLAMA_DEFAULT_PAD_TOKEN,
GPTeacherPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, GPTeacherPrompter, ShareGPTPrompter
def setup_wandb_env_vars(cfg):
if len(cfg.wandb_project) > 0:
os.environ["WANDB_PROJECT"] = cfg.wandb_project
cfg.use_wandb = True
if cfg.wandb_watch and len(cfg.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = cfg.wandb_watch
if cfg.wandb_log_model and len(cfg.wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model
def load_model(base_model, model_type, tokenizer_type, cfg, adapter="lora"):
if adapter != "lora":
raise NotImplementedError(f"{adapter} peft adapter not available")
if "llama" in base_model:
if cfg.device not in ["mps", "cpu"]:
from axolotl.flash_attn import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
try:
if "llama" in base_model:
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
else:
model = getattr(transformers, model_type).from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
except:
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_in_8bit,
torch_dtype=torch.float16 if cfg.load_in_8bit else torch.float32,
device_map=cfg.device_map,
)
try:
if "llama" in base_model:
tokenizer = LlamaTokenizer.from_pretrained(model)
else:
tokenizer = getattr(transformers, tokenizer_type).from_pretrained(model)
except:
tokenizer = AutoTokenizer.from_pretrained(base_model)
if tokenizer.__class__.__name__ in ["LlamaTokenizer", "LlamaTokenizerFast"]:
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.load_in_8bit:
model = prepare_model_for_int8_training(model)
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=cfg.lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
model = PeftModel.from_pretrained(model, cfg.lora_model_dir, device_map = cfg.device_map, torch_dtype=torch.float16)
else:
model = get_peft_model(model, lora_config)
if cfg.ddp:
model.to(f"cuda:{cfg.local_rank}")
# TODO resume_from_checkpoint handling
model.print_trainable_parameters()
return model, tokenizer, lora_config
def choose_device(cfg):
def get_device():
if torch.cuda.is_available():
return "cuda"
else:
try:
if torch.backends.mps.is_available():
return "mps"
except:
return "cpu"
cfg.device = get_device()
if cfg.device == "cuda":
cfg.device_map = {"": cfg.local_rank}
else:
cfg.device_map = {"": cfg.device}
def check_dataset_labels(dataset, tokenizer):
from termcolor import colored
# the dataset is already shuffled, so let's just check the first 5 elements
for idx in range(5):
# Get the input_ids, labels, and attention_mask from the dataset
input_ids = dataset[idx]["input_ids"]
labels = dataset[idx]["labels"]
attention_mask = dataset[idx]["attention_mask"]
# You can compare the input_ids and labels element-wise
# Remember to ignore positions with IGNORE_TOKEN_ID (if you use it) or attention_mask equal to 0
colored_tokens = []
for i, (input_id, label_id, mask) in enumerate(
zip(input_ids, labels, attention_mask)
):
decoded_input_token = tokenizer.decode(input_id)
# Choose the color based on whether the label has the ignore value or not
color = (
"red" if label_id == -100 else ("yellow" if label_id == 0 else "green")
)
colored_token = colored(decoded_input_token, color) + colored(
f"({label_id}, {mask})", "white"
)
colored_tokens.append(colored_token)
print(" ".join(colored_tokens))
print("\n\n\n")
def do_inference(cfg, model, tokenizer):
instruction = "Tell me a joke about dromedaries."
input = ""
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n".format(instruction=instruction, input=input)
batch = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
model.eval()
with torch.no_grad():
generated = model.generate(inputs=batch["input_ids"],
do_sample=True, use_cache=True,
repetition_penalty=1.1,
max_new_tokens=50,
temperature=0.9,
top_p=0.95,
top_k=40,
return_dict_in_generate=True,
output_attentions=False,
output_hidden_states=False,
output_scores=False)
print(tokenizer.decode(generated['sequences'].cpu().tolist()[0]))
def choose_config(path: Path):
yaml_files = [file for file in path.glob("*.yml")]
if not yaml_files:
raise ValueError("No YAML config files found in the specified directory. Are you using a .yml extension?")
print("Choose a YAML file:")
for idx, file in enumerate(yaml_files):
print(f"{idx + 1}. {file}")
chosen_file = None
while chosen_file is None:
try:
choice = int(input("Enter the number of your choice: "))
if 1 <= choice <= len(yaml_files):
chosen_file = yaml_files[choice - 1]
else:
print("Invalid choice. Please choose a number from the list.")
except ValueError:
print("Invalid input. Please enter a number.")
return chosen_file
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
save_steps = eval_steps = min(int(0.05 * total_num_steps), 200)
training_arguments_kwargs = {}
if not cfg.deepspeed:
warmup_steps = min(int(0.03 * total_num_steps), 100)
logging_steps = min(int(0.005 * total_num_steps), 10)
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
training_arguments_kwargs["logging_steps"] = logging_steps
training_arguments_kwargs["bf16"] = cfg.bf16
training_arguments_kwargs["tf32"] = cfg.tf32
training_args = transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
evaluation_strategy="steps" if cfg.val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if cfg.val_set_size > 0 else None,
save_steps=save_steps,
output_dir=cfg.output_dir,
save_total_limit=3,
load_best_model_at_end=True if cfg.val_set_size > 0 else False,
ddp_find_unused_parameters=False if cfg.ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if cfg.use_wandb else None,
run_name=cfg.wandb_run_name if cfg.use_wandb else None,
**training_arguments_kwargs,
)
trainer_kwargs = {}
if not cfg.deepspeed:
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [
p for n, p in model.named_parameters() if n not in decay_parameters
],
"weight_decay": 0.0,
},
]
adam_bnb_optim = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
adam_bnb_optim,
training_args.warmup_steps,
total_num_steps,
)
trainer_kwargs["optimizers"] = (adam_bnb_optim, lr_scheduler)
trainer = transformers.Trainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
**trainer_kwargs,
)
return trainer
def train(
config: Path = Path("configs/"),
**kwargs,
):
if Path(config).is_dir():
config = choose_config(config)
# load the config from the yaml file
with open(config, "r") as f:
cfg: AttrDefault = AttrDefault(lambda: None, yaml.load(f, Loader=yaml.Loader))
# if there are any options passed in the cli, if it is something that seems valid from the yaml,
# then overwrite the value
cfg_keys = dict(cfg).keys()
for k in kwargs:
if k in cfg_keys:
# handle booleans
if isinstance(cfg[k], bool):
cfg[k] = bool(kwargs[k])
else:
cfg[k] = kwargs[k]
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
choose_device(cfg)
cfg.ddp = cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.gradient_accumulation_steps = (
cfg.gradient_accumulation_steps // cfg.world_size
)
setup_wandb_env_vars(cfg)
# Load the model and tokenizer
model, tokenizer, lora_config = load_model(
cfg.base_model, cfg.model_type, cfg.tokenizer_type, cfg, adapter=cfg.adapter
)
if "inference" in kwargs:
do_inference(cfg, model, tokenizer)
return
if cfg.dataset_prepared_path and any(Path(cfg.dataset_prepared_path).glob("*")):
print("Loading prepared dataset from disk...")
dataset = load_from_disk(cfg.datasets)
print("Prepared dataset loaded from disk...")
else:
datasets = []
for d in cfg.datasets:
ds: IterableDataset = load_dataset(
"json", data_files=d.path, streaming=True, split=None
)
if d.type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(
ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
constant_len_dataset = ConstantLengthDataset(
tokenizer, datasets, seq_length=cfg.sequence_len
)
dataset = Dataset.from_list(
[_ for _ in constant_len_dataset]
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
print("Saving prepared dataset to disk...")
if cfg.dataset_prepared_path:
dataset.save_to_disk(cfg.dataset_prepared_path)
else:
dataset.save_to_disk("data/last_run")
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
if cfg.debug:
check_dataset_labels(
train_dataset.select([random.randrange(0, len(train_dataset) - 1)]),
tokenizer,
)
trainer = setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer)
model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# go ahead and presave, so we have the adapter config available to inspect
lora_config.save_pretrained(cfg.output_dir)
# In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
signal.signal(
signal.SIGINT,
lambda signal, frame: (model.save_pretrained(cfg.output_dir), exit(0)),
)
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)
# TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
model.save_pretrained(cfg.output_dir)
if __name__ == "__main__":
fire.Fire(train)
|