File size: 56,469 Bytes
ead34c5 6c81c61 5894f0e 6c81c61 2ea70eb 6c81c61 70b46ca 6c81c61 2ea70eb 6c81c61 641e6f7 7523d1f 641e6f7 decb66e f243c21 6c81c61 decb66e 5698943 6c81c61 58ec8b1 6c81c61 5a5d474 6c81c61 40a6362 732851f 40a6362 6910e6a 40a6362 81d3845 04b978b 8430db2 04b978b 6c81c61 decb66e 6c81c61 5894f0e 18f8119 6c81c61 40a6362 6c81c61 553c80f 6c81c61 00568c1 6c81c61 8c2e05a 4b997c3 6c81c61 5a5d474 6c81c61 641e6f7 04b978b 8430db2 decb66e 9b6ee83 2ea70eb 6c81c61 db9094d 6c81c61 ead34c5 dd449c5 ead34c5 05bd6f1 6c81c61 ead34c5 2ea70eb 6c81c61 decb66e dd449c5 decb66e 6c81c61 b4ac96a 6c81c61 b4ac96a 6c81c61 8430db2 b4ac96a 04b978b 6c81c61 b4ac96a 6c81c61 553c80f 00568c1 641e6f7 00568c1 641e6f7 00568c1 81d3845 641e6f7 6c81c61 641e6f7 00568c1 641e6f7 00568c1 641e6f7 00568c1 81d3845 641e6f7 6c81c61 641e6f7 553c80f 641e6f7 59a31fe 641e6f7 6c81c61 1a6309c ead34c5 6c81c61 641e6f7 6c81c61 ead34c5 6c81c61 1a6309c 6c81c61 641e6f7 6c81c61 2ea70eb 6c81c61 2ea70eb db9094d 18f8119 db9094d 9b6ee83 2a1589f 9b6ee83 2ea70eb 6c81c61 40a6362 db9094d 40a6362 6c81c61 db9094d 6c81c61 db9094d 6c81c61 8c2e05a 6c81c61 8c2e05a 6c81c61 18f8119 6c81c61 f243c21 7523d1f 6c81c61 7d55607 f243c21 6c81c61 7523d1f 6c81c61 7523d1f 6c81c61 7523d1f 6c81c61 7523d1f 6c81c61 7523d1f 6c81c61 7523d1f 6c81c61 5894f0e b8e5603 6c81c61 58ec8b1 6c81c61 5a5d474 6c81c61 40a6362 6c81c61 fb12895 6c81c61 33e1170 4d2e842 6c81c61 9b6ee83 6c81c61 cbdbf9e 6c81c61 40a6362 6c81c61 641e6f7 ead34c5 641e6f7 2ea70eb 5787e1a 1470650 6c81c61 5a5d474 6c81c61 eaaeefc 6c81c61 3c00f40 6c81c61 090c24d 6c81c61 a1da39c 6c81c61 dd449c5 decb66e 6c81c61 13e9381 04b978b 8430db2 6c81c61 00568c1 6c81c61 797f3dd 6c81c61 4b997c3 6c81c61 40a6362 553c80f ef24342 2ea70eb ef24342 6c81c61 1648279 6c81c61 1648279 6c81c61 553c80f ead34c5 6c81c61 05bd6f1 6c81c61 641e6f7 6c81c61 40a6362 ead34c5 553c80f 40a6362 ead34c5 6910e6a ead34c5 5698943 6910e6a 00568c1 6910e6a 732851f 6910e6a 40a6362 f243c21 7523d1f f243c21 7523d1f 5bce45f 7523d1f 33e1170 7523d1f 13eea21 f243c21 7523d1f f243c21 d7057cc 7523d1f 33e1170 18f8119 f243c21 7523d1f f243c21 7523d1f f243c21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 |
# pylint: disable=too-many-lines
"""
Builder for the training args and trainer
"""
import abc
import importlib
import importlib.util
import logging
import math
import sys
from abc import abstractmethod
from collections import defaultdict
from dataclasses import dataclass, field
from functools import wraps
from pathlib import Path
from typing import Dict, List, Literal, Optional, Type, Union
import torch
import transformers
from datasets import Dataset
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
from transformers import (
EarlyStoppingCallback,
Trainer,
TrainerCallback,
TrainingArguments,
)
from transformers.trainer_utils import seed_worker
from transformers.utils import is_sagemaker_mp_enabled
from trl import DPOTrainer
from axolotl.loraplus import create_loraplus_optimizer
from axolotl.monkeypatch.multipack import SUPPORTED_MULTIPACK_MODEL_TYPES
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
from axolotl.utils.callbacks import (
EvalFirstStepCallback,
GPUStatsCallback,
LossWatchDogCallback,
SaveAxolotlConfigtoWandBCallback,
SaveBetterTransformerModelCallback,
bench_eval_callback_factory,
causal_lm_bench_eval_callback_factory,
log_prediction_callback_factory,
)
from axolotl.utils.collators import (
BatchSamplerDataCollatorForSeq2Seq,
DataCollatorForSeq2Seq,
MambaDataCollator,
V2BatchSamplerDataCollatorForSeq2Seq,
)
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
from axolotl.utils.schedulers import (
get_cosine_schedule_with_min_lr,
get_cosine_schedule_with_quadratic_warmup,
get_cosine_schedule_with_warmup_decay_constant,
)
if is_sagemaker_mp_enabled():
import smdistributed.modelparallel.torch as smp
try:
import torch._dynamo # pylint: disable=ungrouped-imports
except ImportError:
pass
LOG = logging.getLogger("axolotl.core.trainer_builder")
def is_mlflow_available():
return importlib.util.find_spec("mlflow") is not None
def _sanitize_kwargs_for_tagging(tag_names, kwargs=None):
if isinstance(tag_names, str):
tag_names = [tag_names]
if kwargs is not None:
if "tags" not in kwargs:
kwargs["tags"] = tag_names
elif "tags" in kwargs and isinstance(kwargs["tags"], list):
kwargs["tags"].extend(tag_names)
elif "tags" in kwargs and isinstance(kwargs["tags"], str):
tag_names.append(kwargs["tags"])
kwargs["tags"] = tag_names
return kwargs
@dataclass
class AxolotlTrainingArguments(TrainingArguments):
"""
Extend the base TrainingArguments for axolotl helpers
"""
model_type: Optional[str] = field(
default=None, metadata={"help": "HF model configuration model_type."}
)
lr_quadratic_warmup: bool = field(
default=False,
metadata={"help": "Use quadratic warmup for cosine scheduling."},
)
pretraining: bool = field(
default=False,
metadata={
"help": "Indicates to trainer whether we are doing continued pretraining."
},
)
sample_packing: bool = field(
default=False,
metadata={"help": "Use sample packing for efficient training."},
)
multipack_real_batches: bool = field(
default=False,
metadata={"help": "Use real batches for efficient training."},
)
eval_sample_packing: Optional[bool] = field(
default=None,
metadata={"help": "Use sample packing for efficient evals."},
)
sample_packing_efficiency: float = field(
default=1.0,
metadata={"help": "Sample packing efficiency for calculating batch length."},
)
max_seq_length: int = field(
default=2048,
metadata={"help": "The maximum sequence length the model can handle"},
)
sample_packing_seq_len_multiplier: int = field(
default=1,
metadata={"help": "the multiplier for the max len for packed sequences"},
)
relora_steps: Optional[int] = field(
default=None,
metadata={"help": "how often to reset for ReLoRA"},
)
relora_warmup_steps: Optional[int] = field(
default=None,
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
)
relora_anneal_steps: Optional[int] = field(
default=None,
metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
)
relora_prune_ratio: Optional[float] = field(
default=0.9,
metadata={"help": "prune ratio for magnitude pruning of the optimizer"},
)
bench_split: Optional[str] = field(
default="eval", metadata={"help": "The benchmark split to run on"}
)
bench_dataset: Optional[str] = field(
default="pharaouk/dharma-1/dharma_1_mini.json",
metadata={
"help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
},
)
do_bench_eval: Optional[bool] = field(
default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
)
do_causal_lm_eval: Optional[bool] = field(
default=False, metadata={"help": "Whether to run the Causal LM evaluation."}
)
max_bench_samples: Optional[int] = field(
default=None,
metadata={
"help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
},
)
bench_source_max_len: int = field(
default=2048, metadata={"help": "Maximum source sequence length for bench."}
)
dataloader_prefetch_factor: Optional[int] = field(
default=None,
metadata={"help": "prefetch_factor argument to the dataloader"},
)
cosine_min_lr_ratio: Optional[float] = field(
default=None,
metadata={"help": "Minimum learning rate is min_lr_ratio * learning_rate"},
)
cosine_constant_lr_ratio: Optional[float] = field(
default=None,
metadata={
"help": "Starting constant learning rate step is cosine_constant_lr_ratio * max_steps"
},
)
loraplus_lr_ratio: Optional[float] = field(
default=None, metadata={"help": "loraplus learning rate ratio lr_B / lr_A."}
)
loraplus_lr_embedding: Optional[float] = field(
default=1e-6,
metadata={"help": "loraplus learning rate for lora embedding layers."},
)
qlora: bool = field(
default=False,
metadata={"help": "whether this is a qlora training"},
)
orpo_alpha: Optional[float] = field(
default=None,
)
class AxolotlTrainer(Trainer):
"""
Extend the base Trainer for axolotl helpers
"""
args = None # type: AxolotlTrainingArguments
tag_names = ["axolotl"]
def __init__(
self,
*_args,
num_epochs=1,
bench_data_collator=None,
eval_data_collator=None,
**kwargs,
):
self.num_epochs = num_epochs
self.bench_data_collator = bench_data_collator
self.eval_data_collator = eval_data_collator
super().__init__(*_args, **kwargs)
self.train_data_collator = self.data_collator
self._stored_metrics = defaultdict(lambda: defaultdict(list))
if self.args.orpo_alpha:
self.loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
def create_optimizer(self):
if self.args.loraplus_lr_ratio is None:
return super().create_optimizer()
opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.optimizer is None: # pylint: disable=access-member-before-definition
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
self.args,
opt_model,
)
loraplus_lr_ratio = getattr(self.args, "loraplus_lr_ratio", None)
loraplus_lr_embedding = getattr(self.args, "loraplus_lr_embedding", None)
self.optimizer = create_loraplus_optimizer( # pylint: disable=attribute-defined-outside-init
opt_model,
optimizer_cls,
optimizer_kwargs,
loraplus_lr_ratio,
loraplus_lr_embedding,
)
if is_sagemaker_mp_enabled():
self.optimizer = smp.DistributedOptimizer( # pylint: disable=attribute-defined-outside-init
self.optimizer
)
return self.optimizer
def create_scheduler(
self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
):
"""
Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
passed as an argument.
Args:
num_training_steps (int): The number of training steps to do.
optimizer (torch.optim.Optimizer): The training optimizer
"""
use_cosine_quadratic = (
self.args.lr_scheduler_type == "cosine"
and self.args.lr_quadratic_warmup is True
)
use_cosine_min_lr = (
self.args.lr_scheduler_type == "cosine"
and self.args.cosine_min_lr_ratio is not None
)
# fmt: off
if self.lr_scheduler is None: # type: ignore # pylint: disable=access-member-before-definition
# fmt: on
if use_cosine_quadratic:
if use_cosine_min_lr:
LOG.warning("Both cosine quadratic warmup and min lr detected. Using quadratic warmup.")
self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup( # pylint: disable=attribute-defined-outside-init
optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
)
elif self.args.cosine_min_lr_ratio and self.args.cosine_constant_lr_ratio and use_cosine_min_lr:
assert 0 <= self.args.cosine_min_lr_ratio <= 1.0, "cosine_min_lr_ratio must be between 0.0 and 1.0"
assert 0 <= self.args.cosine_constant_lr_ratio <= 1.0, "cosine_constant_lr_ratio must be between 0.0 and 1.0"
self.lr_scheduler = get_cosine_schedule_with_warmup_decay_constant( # pylint: disable=attribute-defined-outside-init
optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
min_lr_ratio=self.args.cosine_min_lr_ratio,
constant_lr_ratio=self.args.cosine_constant_lr_ratio,
)
elif self.args.cosine_min_lr_ratio and use_cosine_min_lr:
assert 0 <= self.args.cosine_min_lr_ratio <= 1.0, "cosine_min_lr_ratio must be between 0.0 and 1.0"
self.lr_scheduler = get_cosine_schedule_with_min_lr( # pylint: disable=attribute-defined-outside-init
optimizer,
num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps,
min_lr_ratio=self.args.cosine_min_lr_ratio,
)
else:
return super().create_scheduler(num_training_steps, optimizer)
else:
if use_cosine_quadratic:
LOG.warning("axolotl's cosine scheduler with quadratic warmup not used (e.g., because of deepspeed).")
if use_cosine_min_lr:
LOG.warning("axolotl's cosine scheduler with min lr not used (e.g., because of deepspeed).")
return self.lr_scheduler
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
if self.args.sample_packing and not self.args.pretraining:
if self.args.multipack_real_batches:
batch_size = self.args.per_device_train_batch_size
batch_max_len = self.args.max_seq_length
else:
batch_size = 1
batch_max_len = (
self.args.per_device_train_batch_size * self.args.max_seq_length
)
return MultipackBatchSampler(
RandomSampler(self.train_dataset),
batch_size=batch_size,
drop_last=True,
batch_max_len=batch_max_len,
lengths=get_dataset_lengths(self.train_dataset),
packing_efficiency_estimate=self.args.sample_packing_efficiency,
)
return super()._get_train_sampler()
def _get_eval_sampler(
self, eval_dataset: Dataset
) -> Optional[torch.utils.data.Sampler]:
if self.args.sample_packing and self.args.eval_sample_packing is not False:
if self.args.multipack_real_batches:
batch_size = self.args.per_device_eval_batch_size
batch_max_len = self.args.max_seq_length
else:
batch_size = 1
batch_max_len = (
self.args.per_device_eval_batch_size * self.args.max_seq_length
)
return MultipackBatchSampler(
SequentialSampler(eval_dataset),
batch_size=batch_size,
drop_last=True,
batch_max_len=batch_max_len,
lengths=get_dataset_lengths(eval_dataset),
packing_efficiency_estimate=self.args.sample_packing_efficiency,
)
return super()._get_eval_sampler(eval_dataset)
def get_train_dataloader(self) -> DataLoader:
if self.args.sample_packing and not self.args.pretraining:
train_dataset = self.train_dataset
if "length" in train_dataset.features.keys():
train_dataset = train_dataset.remove_columns(["length"])
data_collator = self.data_collator
dataloader_params = {
"batch_size": self._train_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if self.args.dataloader_prefetch_factor:
dataloader_params[
"prefetch_factor"
] = self.args.dataloader_prefetch_factor
sampler = self._get_train_sampler()
if isinstance(sampler, BatchSampler):
dataloader_params["batch_sampler"] = sampler
del dataloader_params["batch_size"]
else:
dataloader_params["sampler"] = sampler
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = seed_worker
self.accelerator.even_batches = False
return self.accelerator.prepare_data_loader(
DataLoader(train_dataset, **dataloader_params)
)
return super().get_train_dataloader()
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
if self.args.sample_packing and self.args.eval_sample_packing is False:
self.data_collator = ( # pylint: disable=attribute-defined-outside-init
self.eval_data_collator
)
dataloader = super().get_eval_dataloader(eval_dataset)
self.data_collator = ( # pylint: disable=attribute-defined-outside-init
self.train_data_collator
)
return dataloader
if self.args.sample_packing and self.args.eval_sample_packing is not False:
eval_dataset = (
eval_dataset if eval_dataset is not None else self.eval_dataset
)
eval_sampler = self._get_eval_sampler(eval_dataset)
eval_dataset = eval_dataset.remove_columns(["length"])
data_collator = self.data_collator
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if self.args.dataloader_prefetch_factor:
dataloader_params[
"prefetch_factor"
] = self.args.dataloader_prefetch_factor
if isinstance(eval_sampler, BatchSampler):
dataloader_params["batch_sampler"] = eval_sampler
del dataloader_params["batch_size"]
else:
dataloader_params["sampler"] = eval_sampler
dataloader_params["drop_last"] = self.args.dataloader_drop_last
self.accelerator.even_batches = False
return self.accelerator.prepare_data_loader(
DataLoader(eval_dataset, **dataloader_params)
)
return super().get_eval_dataloader(eval_dataset)
def _get_bench_sampler(
self, bench_dataset: Dataset
) -> Optional[torch.utils.data.Sampler]:
if self.args.world_size <= 1:
return SequentialSampler(bench_dataset)
return None
def get_bench_dataloader(
self,
bench_dataset: Dataset,
) -> DataLoader:
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": self.bench_data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
if self.args.dataloader_prefetch_factor:
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
return DataLoader(bench_dataset, **dataloader_params)
# return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))
def compute_loss(self, model, inputs, return_outputs=False):
# use one's weighted cross entropy loss calc
# if self.args.sample_packing:
# labels = inputs.pop("labels")
# outputs = model(**inputs)
# loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
# return (loss, outputs) if return_outputs else loss
if self.args.orpo_alpha:
return self.orpo_compute_loss(model, inputs, return_outputs=return_outputs)
return super().compute_loss(model, inputs, return_outputs=return_outputs)
def orpo_compute_custom_loss(self, logits, labels):
logits = logits.contiguous()
loss = 0.0
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss = self.loss_fct(shift_logits.transpose(2, 1), shift_labels).mean(
dim=-1
)
return loss
def orpo_compute_logps(
self, prompt_attention_mask, chosen_inputs, chosen_attention_mask, logits
):
# Get the shape of chosen_attention_mask[:, :-1]
chosen_shape = chosen_attention_mask[:, :-1].shape
# Calculate the padding size
pad_length = chosen_shape[1] - (prompt_attention_mask.shape[1] - 1)
# Pad prompt_attention_mask with zeros to match the desired shape
prompt_attention_mask_padded = torch.nn.functional.pad(
prompt_attention_mask[:, 1:], (0, pad_length), mode="constant", value=0
)
# Perform the subtraction operation
mask = chosen_attention_mask[:, :-1] > prompt_attention_mask_padded
per_token_logps = torch.gather(
logits[:, :-1, :].log_softmax(-1),
dim=2,
index=(mask * chosen_inputs[:, 1:]).unsqueeze(2),
).squeeze(2)
return torch.mul(per_token_logps, mask.to(dtype=torch.bfloat16)).sum(dim=1).to(
dtype=torch.float64
) / mask.sum(dim=1).to(dtype=torch.float64)
def orpo_compute_loss(self, model, inputs, return_outputs=False):
outputs_neg = model(
**{
"input_ids": inputs["rejected_input_ids"],
"attention_mask": inputs["rejected_attention_mask"],
"labels": inputs["rejected_labels"],
},
output_hidden_states=True,
)
outputs_pos = model(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"labels": inputs["labels"],
},
output_hidden_states=True,
)
# Calculate NLL loss
pos_loss = self.orpo_compute_custom_loss(
logits=outputs_pos.logits, labels=inputs["input_ids"]
)
# Calculate Log Probability
pos_prob = self.orpo_compute_logps(
prompt_attention_mask=inputs["prompt_attention_mask"],
chosen_inputs=inputs["input_ids"],
chosen_attention_mask=inputs["attention_mask"],
logits=outputs_pos.logits,
)
neg_prob = self.orpo_compute_logps(
prompt_attention_mask=inputs["prompt_attention_mask"],
chosen_inputs=inputs["rejected_input_ids"],
chosen_attention_mask=inputs["rejected_attention_mask"],
logits=outputs_neg.logits,
)
# Calculate log odds
log_odds = (pos_prob - neg_prob) - (
torch.log(1 - torch.exp(pos_prob)) - torch.log(1 - torch.exp(neg_prob))
)
sig_ratio = torch.nn.functional.sigmoid(log_odds)
ratio = torch.log(sig_ratio)
# Calculate the Final Loss
loss = torch.mean(pos_loss - self.args.orpo_alpha * ratio).to(
dtype=torch.bfloat16
)
metrics = {}
metrics["chosen_geometric_mean"] = torch.mean(pos_prob).cpu().item()
metrics["rejected_geometric_mean"] = torch.mean(neg_prob).cpu().item()
metrics["log_odds_ratio"] = torch.mean(ratio).cpu().item()
metrics["log_odds"] = torch.mean(log_odds).cpu().item()
self.store_metrics(metrics, train_eval="train")
return (loss, outputs_pos) if return_outputs else loss
@wraps(Trainer.push_to_hub)
def push_to_hub(self, *args, **kwargs) -> str:
"""
Overwrite the `push_to_hub` method in order to force-add the tags when pushing the
model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details.
"""
kwargs = _sanitize_kwargs_for_tagging(tag_names=self.tag_names, kwargs=kwargs)
return super().push_to_hub(*args, **kwargs)
@wraps(Trainer.create_accelerator_and_postprocess)
def create_accelerator_and_postprocess(self):
res = super().create_accelerator_and_postprocess()
if self.is_fsdp_enabled:
if (
"limit_all_gathers" in self.args.fsdp_config
and self.args.fsdp_config["limit_all_gathers"]
):
self.accelerator.state.fsdp_plugin.limit_all_gathers = True
return res
def log(self, logs: Dict[str, float]) -> None:
"""
Log `logs` on the various objects watching training, including stored metrics.
Args:
logs (`Dict[str, float]`):
The values to log.
"""
# logs either has 'loss' or 'eval_loss'
train_eval = "train" if "loss" in logs else "eval"
# Add averaged stored metrics to logs
for key, metrics in self._stored_metrics[train_eval].items():
logs[key] = torch.tensor(metrics).mean().item()
del self._stored_metrics[train_eval]
return super().log(logs)
def store_metrics(
self, metrics: Dict[str, float], train_eval: Literal["train", "eval"] = "train"
) -> None:
for key, value in metrics.items():
self._stored_metrics[train_eval][key].append(value)
class AxolotlMambaTrainer(AxolotlTrainer):
"""
Mamba specific trainer to handle loss calculation
"""
tag_names = ["axolotl", "mamba"]
def compute_loss(
self,
model,
inputs,
return_outputs=False, # pylint: disable=unused-argument
):
input_ids = inputs.pop("input_ids")
lm_logits = model(input_ids).logits
labels = input_ids.to(lm_logits.device)
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
lm_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
)
return lm_loss
class OneCycleLRSchedulerTrainer(AxolotlTrainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
tag_names = ["axolotl", "onecycle"]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
pct_start = num_warmup_steps / num_training_steps
self.lr_scheduler = OneCycleLR(
optimizer,
max_lr=self.args.learning_rate,
total_steps=num_training_steps,
pct_start=pct_start,
div_factor=6,
)
return self.lr_scheduler
class ReLoRATrainer(AxolotlTrainer):
"""
Trainer subclass that uses the OneCycleLR scheduler
"""
tag_names = ["axolotl", "relora"]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lr_scheduler = None
def create_scheduler(
self,
num_training_steps: int,
optimizer: Optional[torch.optim.Optimizer] = None,
):
optimizer = self.optimizer if optimizer is None else optimizer
lr_scheduler = super().create_scheduler(num_training_steps, optimizer)
if self.args.relora_steps:
warmup_steps = (
self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
)
anneal_steps = (
self.args.relora_anneal_steps if self.args.relora_anneal_steps else 1
)
self.lr_scheduler = ReLoRAScheduler(
optimizer,
lr_scheduler,
self.args.relora_steps,
anneal_steps,
warmup_steps,
)
else:
self.lr_scheduler = lr_scheduler
return self.lr_scheduler
class AxolotlDPOTrainer(DPOTrainer):
"""
Extend the base DPOTrainer for axolotl helpers
"""
tag_names = ["axolotl", "dpo"]
@wraps(DPOTrainer.push_to_hub)
def push_to_hub(self, *args, **kwargs) -> str:
"""
Overwrite the `push_to_hub` method in order to force-add the tags when pushing the
model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details.
"""
kwargs = _sanitize_kwargs_for_tagging(tag_names=self.tag_names, kwargs=kwargs)
return super().push_to_hub(*args, **kwargs)
class TrainerBuilderBase(abc.ABC):
"""
Base class for trainer builder
"""
_train_dataset = None
_eval_dataset = None
_model_ref = None
_peft_config = None
def __init__(self, cfg, model, tokenizer):
self.cfg = cfg
self.model = model
self.tokenizer = tokenizer
# in case the model supports tagging, add the axolotl tag.
# This makes sure the tag is correctly pushed even if a user calls
# model.push_to_hub instad of trainer.push_to_hub.
if hasattr(model, "add_model_tags"):
model.add_model_tags(["axolotl"])
@property
def model_ref(self):
return self._model_ref
@model_ref.setter
def model_ref(self, model):
self._model_ref = model
@property
def train_dataset(self):
return self._train_dataset
@train_dataset.setter
def train_dataset(self, dataset):
self._train_dataset = dataset
@property
def eval_dataset(self):
return self._eval_dataset
@eval_dataset.setter
def eval_dataset(self, dataset):
self._eval_dataset = dataset
@property
def peft_config(self):
return self._peft_config
@peft_config.setter
def peft_config(self, peft_config):
self._peft_config = peft_config
@abstractmethod
def build(self, total_num_steps):
pass
def get_callbacks(self) -> List[TrainerCallback]:
callbacks = []
if self.cfg.use_wandb:
callbacks.append(
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
)
return callbacks
@abstractmethod
def get_post_trainer_create_callbacks(self, trainer):
"""
Callbacks added after the trainer is created, usually b/c these need access to the trainer
"""
def hook_pre_create_training_args(self, training_arguments_kwargs):
# TODO
return training_arguments_kwargs
def hook_post_create_training_args(self, training_arguments):
# TODO
return training_arguments
def hook_pre_create_trainer(self, trainer_kwargs, trainer_cls):
# TODO
return trainer_kwargs, trainer_cls
def hook_post_create_trainer(self, trainer):
# TODO
return trainer
class HFCausalTrainerBuilder(TrainerBuilderBase):
"""
Build the HuggingFace training args/trainer for Causal models
"""
def get_callbacks(self):
callbacks = super().get_callbacks()
callbacks.append(GPUStatsCallback(self.cfg))
callbacks.append(EvalFirstStepCallback())
if self.cfg.relora_steps:
callbacks.append(ReLoRACallback(self.cfg))
if (
hasattr(self.model, "use_bettertransformer")
and self.model.use_bettertransformer is True
):
callbacks.append(SaveBetterTransformerModelCallback())
if self.cfg.use_wandb:
callbacks.append(
SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
)
if self.cfg.use_mlflow and is_mlflow_available():
from axolotl.utils.callbacks.mlflow_ import (
SaveAxolotlConfigtoMlflowCallback,
)
callbacks.append(
SaveAxolotlConfigtoMlflowCallback(self.cfg.axolotl_config_path)
)
if self.cfg.loss_watchdog_threshold is not None:
callbacks.append(LossWatchDogCallback(self.cfg))
return callbacks
def get_post_trainer_create_callbacks(self, trainer):
callbacks = []
if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
LogPredictionCallback = log_prediction_callback_factory(
trainer, self.tokenizer
)
callbacks.append(LogPredictionCallback(self.cfg))
if self.cfg.do_bench_eval:
callbacks.append(bench_eval_callback_factory(trainer, self.tokenizer))
if self.cfg.do_causal_lm_eval:
CausalLMBenchEvalCallback = causal_lm_bench_eval_callback_factory(
trainer, self.tokenizer
)
callbacks.append(CausalLMBenchEvalCallback(self.cfg))
if self.cfg.early_stopping_patience:
early_stop_cb = EarlyStoppingCallback(
self.cfg.early_stopping_patience,
)
callbacks.append(early_stop_cb)
return callbacks
def _get_trainer_cls(self):
if self.cfg.lr_scheduler == "one_cycle" and (
self.cfg.fsdp or self.cfg.adapter == "qlora"
):
return OneCycleLRSchedulerTrainer
if self.cfg.relora_steps:
return ReLoRATrainer
if self.cfg.model_config_type == "mamba":
return AxolotlMambaTrainer
return AxolotlTrainer
def build(self, total_num_steps):
warmup_steps = None
if self.cfg.warmup_steps is not None:
warmup_steps = self.cfg.warmup_steps
elif self.cfg.warmup_ratio is not None:
warmup_steps = max(int(self.cfg.warmup_ratio * total_num_steps), 0)
else:
warmup_steps = min(int(0.03 * total_num_steps), 100)
logging_steps = (
self.cfg.logging_steps
if self.cfg.logging_steps is not None
else max(min(int(0.005 * total_num_steps), 10), 1)
)
training_arguments_kwargs = {}
if self.cfg.bf16 == "full":
training_arguments_kwargs["bf16_full_eval"] = True
else:
training_arguments_kwargs["bf16"] = self.cfg.bf16
training_arguments_kwargs["fp16"] = (
self.cfg.fp16 and not self.cfg.bf16
) or False
training_arguments_kwargs["tf32"] = self.cfg.tf32
training_arguments_kwargs["warmup_steps"] = warmup_steps
training_arguments_kwargs["logging_steps"] = logging_steps
if self.cfg.seed:
training_arguments_kwargs["seed"] = self.cfg.seed
if self.cfg.gradient_checkpointing:
training_arguments_kwargs[
"gradient_checkpointing"
] = self.cfg.gradient_checkpointing
if self.cfg.gradient_checkpointing_kwargs is not None:
training_arguments_kwargs[
"gradient_checkpointing_kwargs"
] = self.cfg.gradient_checkpointing_kwargs
if self.cfg.fsdp:
training_arguments_kwargs["fsdp"] = self.cfg.fsdp
if self.cfg.fsdp_config:
training_arguments_kwargs["fsdp_config"] = dict(self.cfg.fsdp_config)
if self.cfg.adapter == "qlora":
training_arguments_kwargs["qlora"] = True
# deepspeed
if self.cfg.deepspeed:
training_arguments_kwargs["deepspeed"] = self.cfg.deepspeed
if self.cfg.lr_quadratic_warmup is not None:
training_arguments_kwargs[
"lr_quadratic_warmup"
] = self.cfg.lr_quadratic_warmup
if self.cfg.adam_beta1:
training_arguments_kwargs["adam_beta1"] = self.cfg.adam_beta1
if self.cfg.adam_beta2:
training_arguments_kwargs["adam_beta2"] = self.cfg.adam_beta2
if self.cfg.adam_epsilon:
training_arguments_kwargs["adam_epsilon"] = self.cfg.adam_epsilon
if self.cfg.max_grad_norm:
training_arguments_kwargs["max_grad_norm"] = self.cfg.max_grad_norm
if self.cfg.hub_model_id:
training_arguments_kwargs["hub_model_id"] = self.cfg.hub_model_id
training_arguments_kwargs["push_to_hub"] = True
training_arguments_kwargs["hub_private_repo"] = True
training_arguments_kwargs["hub_always_push"] = True
if self.cfg.hub_strategy:
training_arguments_kwargs["hub_strategy"] = self.cfg.hub_strategy
if self.cfg.save_safetensors is not None:
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
if self.cfg.sample_packing_eff_est:
training_arguments_kwargs[
"sample_packing_efficiency"
] = self.cfg.sample_packing_eff_est
if self.cfg.dataloader_pin_memory is not None:
training_arguments_kwargs[
"dataloader_pin_memory"
] = self.cfg.dataloader_pin_memory
if self.cfg.dataloader_num_workers is not None:
training_arguments_kwargs[
"dataloader_num_workers"
] = self.cfg.dataloader_num_workers
if self.cfg.dataloader_prefetch_factor is not None:
training_arguments_kwargs[
"dataloader_prefetch_factor"
] = self.cfg.dataloader_prefetch_factor
if self.cfg.dataloader_drop_last is not None:
training_arguments_kwargs[
"dataloader_drop_last"
] = self.cfg.dataloader_drop_last
elif self.cfg.sample_packing and self.cfg.eval_sample_packing is False:
training_arguments_kwargs["dataloader_drop_last"] = True
if self.cfg.remove_unused_columns is not None:
training_arguments_kwargs[
"remove_unused_columns"
] = self.cfg.remove_unused_columns
if not self.cfg.test_datasets and self.cfg.val_set_size == 0:
# no eval set, so don't eval
training_arguments_kwargs["evaluation_strategy"] = "no"
elif self.cfg.eval_steps:
training_arguments_kwargs["evaluation_strategy"] = "steps"
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
elif self.cfg.evaluation_strategy:
training_arguments_kwargs[
"evaluation_strategy"
] = self.cfg.evaluation_strategy
else:
# we have an eval set, but no steps defined, default to use epoch
training_arguments_kwargs["evaluation_strategy"] = "epoch"
if self.cfg.save_steps:
training_arguments_kwargs["save_strategy"] = "steps"
training_arguments_kwargs["save_steps"] = self.cfg.save_steps
elif self.cfg.save_strategy:
training_arguments_kwargs["save_strategy"] = self.cfg.save_strategy
else:
# default to saving each epoch if not defined
training_arguments_kwargs["save_strategy"] = "epoch"
if self.cfg.do_bench_eval:
training_arguments_kwargs["do_bench_eval"] = self.cfg.do_bench_eval
if self.cfg.bench_dataset:
training_arguments_kwargs["bench_dataset"] = self.cfg.bench_dataset
if self.cfg.do_causal_lm_eval:
training_arguments_kwargs["do_causal_lm_eval"] = self.cfg.do_causal_lm_eval
if self.cfg.metric_for_best_model:
training_arguments_kwargs[
"metric_for_best_model"
] = self.cfg.metric_for_best_model
if self.cfg.greater_is_better:
training_arguments_kwargs["greater_is_better"] = self.cfg.greater_is_better
if self.cfg.torch_compile:
if torch.__version__ < "2.1.0": # pylint: disable=protected-access
LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
elif torch._dynamo: # pylint: disable=protected-access
torch._dynamo.config.suppress_errors = ( # pylint: disable=protected-access
True
)
training_arguments_kwargs["torch_compile"] = self.cfg.torch_compile
if self.cfg.torch_compile_backend:
training_arguments_kwargs[
"torch_compile_backend"
] = self.cfg.torch_compile_backend
# DDP Config
if self.cfg.ddp_timeout:
training_arguments_kwargs["ddp_timeout"] = self.cfg.ddp_timeout
# see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
if self.cfg.ddp_bucket_cap_mb:
training_arguments_kwargs["ddp_bucket_cap_mb"] = self.cfg.ddp_bucket_cap_mb
if self.cfg.ddp_broadcast_buffers is not None:
training_arguments_kwargs[
"ddp_broadcast_buffers"
] = self.cfg.ddp_broadcast_buffers
# these are all the "standard" kwargs that are def used
training_arguments_kwargs["max_steps"] = (
total_num_steps if self.cfg.max_steps else -1
)
training_arguments_kwargs["max_seq_length"] = self.cfg.sequence_len
training_arguments_kwargs[
"per_device_train_batch_size"
] = self.cfg.micro_batch_size
if self.cfg.eval_batch_size:
training_arguments_kwargs[
"per_device_eval_batch_size"
] = self.cfg.eval_batch_size
training_arguments_kwargs[
"gradient_accumulation_steps"
] = self.cfg.gradient_accumulation_steps
training_arguments_kwargs[
"eval_accumulation_steps"
] = self.cfg.gradient_accumulation_steps
training_arguments_kwargs["num_train_epochs"] = self.cfg.num_epochs
training_arguments_kwargs["learning_rate"] = self.cfg.learning_rate
training_arguments_kwargs["output_dir"] = self.cfg.output_dir
training_arguments_kwargs["save_total_limit"] = (
self.cfg.save_total_limit if self.cfg.save_total_limit else 4
)
training_arguments_kwargs["load_best_model_at_end"] = (
(
self.cfg.load_best_model_at_end is not False
or self.cfg.early_stopping_patience
)
and (
(not self.cfg.test_datasets and self.cfg.val_set_size > 0)
or (self.cfg.test_datasets and self.cfg.val_set_size == 0)
)
and self.cfg.save_steps
and self.cfg.eval_steps
and self.cfg.save_steps % self.cfg.eval_steps == 0
) or False
training_arguments_kwargs["ddp_find_unused_parameters"] = (
False if self.cfg.ddp else None
)
training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
report_to = None
if self.cfg.use_wandb:
report_to = "wandb"
if self.cfg.use_mlflow:
report_to = "mlflow"
training_arguments_kwargs["report_to"] = report_to
training_arguments_kwargs["run_name"] = (
self.cfg.wandb_name if self.cfg.use_wandb else None
)
training_arguments_kwargs["optim"] = (
self.cfg.optimizer if self.cfg.optimizer else "adamw_hf"
)
if self.cfg.optim_args:
if isinstance(self.cfg.optim_args, dict):
optim_args = ",".join(
[f"{key}={value}" for key, value in self.cfg.optim_args.items()]
)
else:
optim_args = self.cfg.optim_args
training_arguments_kwargs["optim_args"] = optim_args
if self.cfg.optim_target_modules:
training_arguments_kwargs[
"optim_target_modules"
] = self.cfg.optim_target_modules
training_arguments_kwargs["loraplus_lr_ratio"] = self.cfg.loraplus_lr_ratio
training_arguments_kwargs[
"loraplus_lr_embedding"
] = self.cfg.loraplus_lr_embedding
training_arguments_kwargs["lr_scheduler_type"] = (
self.cfg.lr_scheduler
if self.cfg.lr_scheduler
and self.cfg.lr_scheduler not in ("one_cycle", "log_sweep")
else "cosine"
)
training_arguments_kwargs["lr_scheduler_kwargs"] = (
self.cfg.lr_scheduler_kwargs if self.cfg.lr_scheduler_kwargs else {}
)
training_arguments_kwargs["cosine_min_lr_ratio"] = self.cfg.cosine_min_lr_ratio
training_arguments_kwargs[
"cosine_constant_lr_ratio"
] = self.cfg.cosine_constant_lr_ratio
training_arguments_kwargs["weight_decay"] = (
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
)
training_arguments_kwargs["sample_packing"] = (
self.cfg.sample_packing if self.cfg.sample_packing else False
)
training_arguments_kwargs["multipack_real_batches"] = (
self.cfg.flash_attention is not True
)
training_arguments_kwargs["eval_sample_packing"] = (
self.cfg.sample_packing
if self.cfg.eval_sample_packing is not False
else False
)
training_arguments_kwargs[
"sample_packing_seq_len_multiplier"
] = self.cfg.micro_batch_size
if self.cfg.relora_steps:
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
training_arguments_kwargs[
"relora_warmup_steps"
] = self.cfg.relora_warmup_steps
if self.cfg.relora_anneal_steps:
training_arguments_kwargs[
"relora_anneal_steps"
] = self.cfg.relora_anneal_steps
if self.cfg.relora_prune_ratio:
training_arguments_kwargs[
"relora_prune_ratio"
] = self.cfg.relora_prune_ratio
training_arguments_kwargs = self.hook_pre_create_training_args(
training_arguments_kwargs
)
training_arguments_kwargs["model_type"] = self.cfg.model_config_type
training_arguments_kwargs["pretraining"] = bool(self.cfg.pretraining_dataset)
if self.cfg.rl == "orpo":
training_arguments_kwargs["orpo_alpha"] = self.cfg.orpo_alpha
if self.cfg.neftune_noise_alpha is not None:
training_arguments_kwargs[
"neftune_noise_alpha"
] = self.cfg.neftune_noise_alpha
trainer_kwargs = {}
if self.cfg.optimizer == "lion_pytorch":
from lion_pytorch import Lion
lion_kwargs = {"lr": training_arguments_kwargs["learning_rate"]}
if "weight_decay" in training_arguments_kwargs:
lion_kwargs["weight_decay"] = training_arguments_kwargs["weight_decay"]
if (
"adam_beta1" in training_arguments_kwargs
and "adam_beta2" in training_arguments_kwargs
):
lion_kwargs["betas"] = (
training_arguments_kwargs["adam_beta1"],
training_arguments_kwargs["adam_beta2"],
)
trainer_kwargs["optimizers"] = (
Lion(params=self.model.parameters(), **lion_kwargs),
None,
)
# Set default so transformers doesn't throw
training_arguments_kwargs["optim"] = "adamw_hf"
if self.cfg.optimizer == "adamw_anyprecision":
if Path(self.cfg.torchdistx_path).exists():
sys.path.append(self.cfg.torchdistx_path)
importlib.import_module("torchdistx")
training_args = (
AxolotlTrainingArguments( # pylint: disable=unexpected-keyword-arg
**training_arguments_kwargs,
)
)
training_args = self.hook_post_create_training_args(training_args)
data_collator_kwargs = {
"padding": True, # True/"longest" is the default
}
if self.cfg.pad_to_sequence_len:
data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
self.cfg.sequence_len / 64
)
else:
# A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
data_collator_kwargs["pad_to_multiple_of"] = 64
trainer_cls = self._get_trainer_cls()
trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
trainer_kwargs, trainer_cls
)
trainer = trainer_cls(
model=self.model,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
args=training_args,
data_collator=self.build_collator(training_args, **data_collator_kwargs),
eval_data_collator=self.build_collator(
training_args, is_eval=True, **data_collator_kwargs
),
bench_data_collator=transformers.DataCollatorForSeq2Seq(
self.tokenizer,
return_tensors="pt",
**data_collator_kwargs,
),
callbacks=self.get_callbacks(),
num_epochs=self.cfg.num_epochs,
**trainer_kwargs,
)
trainer = self.hook_post_create_trainer(trainer)
for callback in self.get_post_trainer_create_callbacks(trainer):
trainer.add_callback(callback)
if self.cfg.deepspeed and self.cfg.sample_packing:
trainer.accelerator.state.deepspeed_plugin.deepspeed_config[
"train_micro_batch_size_per_gpu"
] = self.cfg.micro_batch_size
return trainer
def build_collator(
self, training_args: AxolotlTrainingArguments, is_eval=False, **kwargs
):
if training_args.pretraining:
return None
if self.cfg.model_config_type == "mamba":
return MambaDataCollator(tokenizer=self.tokenizer)
use_batch_sampler_collator = False
if is_eval is False and training_args.sample_packing:
use_batch_sampler_collator = True
if is_eval and training_args.eval_sample_packing:
use_batch_sampler_collator = True
collator: Type[
Union[
V2BatchSamplerDataCollatorForSeq2Seq,
BatchSamplerDataCollatorForSeq2Seq,
DataCollatorForSeq2Seq,
]
]
if use_batch_sampler_collator:
if self.cfg.model_config_type in SUPPORTED_MULTIPACK_MODEL_TYPES:
collator = V2BatchSamplerDataCollatorForSeq2Seq
elif (
self.cfg.model_config_type in ["llama"]
and self.cfg.flash_attention is not True
):
collator = V2BatchSamplerDataCollatorForSeq2Seq
else:
collator = BatchSamplerDataCollatorForSeq2Seq
else:
collator = DataCollatorForSeq2Seq
return collator(
self.tokenizer,
return_tensors="pt",
**kwargs,
)
class HFDPOTrainerBuilder(TrainerBuilderBase):
"""
Trainer factory class for DPO Trainer
"""
def get_callbacks(self):
callbacks = super().get_callbacks()
return callbacks
def get_post_trainer_create_callbacks(self, trainer):
callbacks = []
return callbacks
def build_training_arguments(self, total_num_steps):
training_args_kwargs = {}
for arg in [
"adam_beta1",
"adam_beta2",
"adam_epsilon",
"dataloader_num_workers",
"dataloader_pin_memory",
]:
if hasattr(self.cfg, arg) and getattr(self.cfg, arg) is not None:
training_args_kwargs[arg] = getattr(self.cfg, arg)
if self.cfg.hub_model_id:
training_args_kwargs["hub_model_id"] = self.cfg.hub_model_id
training_args_kwargs["push_to_hub"] = True
training_args_kwargs["hub_private_repo"] = True
training_args_kwargs["hub_always_push"] = True
if self.cfg.hub_strategy:
training_args_kwargs["hub_strategy"] = self.cfg.hub_strategy
if self.cfg.save_safetensors is not None:
training_args_kwargs["save_safetensors"] = self.cfg.save_safetensors
if self.eval_dataset:
training_args_kwargs["evaluation_strategy"] = "steps"
training_args_kwargs["eval_steps"] = self.cfg.eval_steps
else:
training_args_kwargs["evaluation_strategy"] = "no"
if self.cfg.bf16 or self.cfg.bfloat16:
training_args_kwargs["bf16"] = True
training_args_kwargs["lr_scheduler_type"] = (
self.cfg.lr_scheduler if self.cfg.lr_scheduler else "cosine"
)
training_args_kwargs["lr_scheduler_kwargs"] = (
self.cfg.lr_scheduler_kwargs if self.cfg.lr_scheduler_kwargs else {}
)
if self.cfg.remove_unused_columns is not None:
training_args_kwargs[
"remove_unused_columns"
] = self.cfg.remove_unused_columns
else:
training_args_kwargs["remove_unused_columns"] = False
if self.cfg.dataloader_pin_memory is not None:
training_args_kwargs[
"dataloader_pin_memory"
] = self.cfg.dataloader_pin_memory
if self.cfg.dataloader_num_workers is not None:
training_args_kwargs[
"dataloader_num_workers"
] = self.cfg.dataloader_num_workers
if self.cfg.dataloader_prefetch_factor is not None:
training_args_kwargs[
"dataloader_prefetch_factor"
] = self.cfg.dataloader_prefetch_factor
if self.cfg.gradient_checkpointing:
training_args_kwargs[
"gradient_checkpointing"
] = self.cfg.gradient_checkpointing
if self.cfg.gradient_checkpointing_kwargs is not None:
training_args_kwargs[
"gradient_checkpointing_kwargs"
] = self.cfg.gradient_checkpointing_kwargs
else:
training_args_kwargs["gradient_checkpointing_kwargs"] = {
"use_reentrant": False
}
# set save_strategy and save_steps
if self.cfg.save_steps:
training_args_kwargs["save_strategy"] = "steps"
training_args_kwargs["save_steps"] = self.cfg.save_steps
elif self.cfg.save_strategy:
training_args_kwargs["save_strategy"] = self.cfg.save_strategy
else:
# default to saving each epoch if not defined
training_args_kwargs["save_strategy"] = "epoch"
training_args = TrainingArguments(
per_device_train_batch_size=self.cfg.micro_batch_size,
max_steps=self.cfg.max_steps or total_num_steps,
gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
learning_rate=self.cfg.learning_rate,
output_dir=self.cfg.output_dir,
warmup_steps=self.cfg.warmup_steps,
logging_first_step=True,
logging_steps=1,
optim=self.cfg.optimizer,
save_total_limit=self.cfg.save_total_limit or 5,
**training_args_kwargs,
)
return training_args
def build(self, total_num_steps):
training_args = self.build_training_arguments(total_num_steps)
dpo_trainer_kwargs = {}
if self.cfg.rl == "ipo":
dpo_trainer_kwargs["loss_type"] = "ipo"
if self.cfg.dpo_label_smoothing:
dpo_trainer_kwargs["label_smoothing"] = self.cfg.dpo_label_smoothing
elif self.cfg.rl == "kto_pair":
dpo_trainer_kwargs["loss_type"] = "kto_pair"
if self.eval_dataset:
dpo_trainer_kwargs["eval_dataset"] = self.eval_dataset
if self.cfg.adapter and self.peft_config:
dpo_trainer_kwargs["peft_config"] = self.peft_config
if self.cfg.precompute_ref_log_probs is not None:
dpo_trainer_kwargs[
"precompute_ref_log_probs"
] = self.cfg.precompute_ref_log_probs
dpo_trainer = AxolotlDPOTrainer(
self.model,
self.model_ref,
args=training_args,
beta=self.cfg.dpo_beta or 0.1,
train_dataset=self.train_dataset,
tokenizer=self.tokenizer,
max_length=self.cfg.sequence_len,
max_target_length=None,
max_prompt_length=self.cfg.sequence_len,
generate_during_eval=True,
callbacks=self.get_callbacks(),
**dpo_trainer_kwargs,
)
dpo_trainer = self.hook_post_create_trainer(dpo_trainer)
for callback in self.get_post_trainer_create_callbacks(dpo_trainer):
dpo_trainer.add_callback(callback)
return dpo_trainer
class HFPPOTrainerBuilder(TrainerBuilderBase):
"""
HF Factory class for PPO Trainer
"""
def get_callbacks(self):
callbacks = []
return callbacks
def get_post_trainer_create_callbacks(self, trainer):
callbacks = []
return callbacks
def build(self, total_num_steps):
# build PPOConfig
pass
|