File size: 56,469 Bytes
ead34c5
6c81c61
 
 
 
 
 
5894f0e
6c81c61
 
 
 
2ea70eb
6c81c61
70b46ca
6c81c61
2ea70eb
6c81c61
 
 
 
 
641e6f7
7523d1f
 
 
 
 
 
641e6f7
decb66e
f243c21
6c81c61
decb66e
5698943
6c81c61
 
 
 
58ec8b1
6c81c61
 
 
5a5d474
6c81c61
 
40a6362
 
732851f
40a6362
6910e6a
40a6362
81d3845
04b978b
 
 
8430db2
04b978b
6c81c61
decb66e
 
 
6c81c61
 
 
 
 
 
 
 
5894f0e
 
 
 
18f8119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
40a6362
 
 
6c81c61
 
 
 
553c80f
 
 
 
 
 
6c81c61
 
 
 
00568c1
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2e05a
 
 
 
4b997c3
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
5a5d474
 
 
6c81c61
 
 
 
 
 
 
 
 
641e6f7
 
 
 
04b978b
 
 
 
8430db2
 
 
 
 
 
decb66e
 
 
 
 
 
 
9b6ee83
 
 
 
2ea70eb
 
 
6c81c61
 
 
 
 
 
 
 
db9094d
6c81c61
ead34c5
 
 
 
 
 
dd449c5
ead34c5
05bd6f1
6c81c61
ead34c5
 
 
2ea70eb
 
 
6c81c61
decb66e
 
 
 
 
 
 
 
dd449c5
decb66e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
b4ac96a
 
 
 
 
 
 
 
 
6c81c61
 
 
 
b4ac96a
 
 
 
6c81c61
 
 
 
 
8430db2
 
 
 
 
 
 
 
 
 
b4ac96a
04b978b
 
 
 
 
 
 
6c81c61
 
b4ac96a
 
 
 
 
 
 
6c81c61
 
 
553c80f
00568c1
 
 
 
 
 
 
 
641e6f7
 
00568c1
641e6f7
00568c1
81d3845
641e6f7
6c81c61
 
 
 
 
 
641e6f7
00568c1
 
 
 
 
 
 
 
641e6f7
 
00568c1
641e6f7
00568c1
81d3845
641e6f7
6c81c61
 
 
641e6f7
553c80f
641e6f7
59a31fe
 
641e6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
1a6309c
ead34c5
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
641e6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
ead34c5
6c81c61
 
 
 
 
 
 
 
 
 
 
 
1a6309c
6c81c61
 
 
 
 
 
641e6f7
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ea70eb
 
6c81c61
 
2ea70eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9094d
 
 
 
 
 
18f8119
db9094d
 
 
9b6ee83
 
 
 
 
2a1589f
 
 
 
 
9b6ee83
 
 
2ea70eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
40a6362
 
 
 
 
db9094d
 
40a6362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
db9094d
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9094d
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2e05a
 
 
6c81c61
 
 
 
8c2e05a
6c81c61
 
 
 
 
 
 
 
18f8119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
f243c21
7523d1f
6c81c61
 
 
 
 
 
7d55607
 
 
 
 
 
f243c21
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7523d1f
 
 
 
 
 
 
 
6c81c61
 
 
 
7523d1f
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7523d1f
 
 
 
 
 
6c81c61
7523d1f
6c81c61
7523d1f
6c81c61
 
 
 
 
 
 
 
7523d1f
6c81c61
 
 
 
 
5894f0e
 
 
 
 
b8e5603
 
 
6c81c61
58ec8b1
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
5a5d474
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40a6362
 
6c81c61
 
 
fb12895
 
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e1170
4d2e842
 
 
6c81c61
 
 
 
 
9b6ee83
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbdbf9e
6c81c61
 
 
 
40a6362
6c81c61
 
 
 
 
 
 
641e6f7
 
 
 
 
 
 
 
 
 
 
 
ead34c5
 
 
 
 
 
641e6f7
2ea70eb
 
 
 
 
5787e1a
1470650
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5d474
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaaeefc
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c00f40
 
 
 
6c81c61
 
 
 
 
 
 
 
090c24d
 
 
 
 
 
6c81c61
a1da39c
6c81c61
 
 
 
dd449c5
 
 
 
 
 
 
 
 
 
 
 
decb66e
 
 
 
6c81c61
 
 
 
 
 
13e9381
 
 
04b978b
8430db2
 
 
6c81c61
 
 
 
 
 
00568c1
 
 
6c81c61
797f3dd
 
 
6c81c61
 
 
 
4b997c3
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
40a6362
553c80f
ef24342
2ea70eb
 
 
ef24342
 
 
 
 
6c81c61
 
1648279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c81c61
 
 
 
 
1648279
 
 
 
 
 
 
6c81c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553c80f
ead34c5
 
 
6c81c61
 
 
 
 
 
05bd6f1
6c81c61
 
 
 
 
 
641e6f7
 
 
 
 
6c81c61
40a6362
ead34c5
 
 
553c80f
 
 
40a6362
 
 
ead34c5
 
 
 
 
 
6910e6a
 
 
 
 
 
 
ead34c5
5698943
6910e6a
00568c1
 
 
 
 
6910e6a
 
 
 
732851f
6910e6a
40a6362
 
 
 
f243c21
 
 
 
 
 
 
 
7523d1f
f243c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7523d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bce45f
 
 
 
 
 
7523d1f
 
 
 
 
 
 
 
 
 
 
 
 
33e1170
 
 
 
 
 
 
 
 
 
 
 
7523d1f
13eea21
 
 
 
 
 
 
 
 
 
f243c21
 
7523d1f
f243c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7057cc
 
7523d1f
 
 
 
33e1170
 
 
 
18f8119
f243c21
 
 
 
 
 
 
 
 
 
7523d1f
f243c21
 
7523d1f
 
 
f243c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
# pylint: disable=too-many-lines
"""
Builder for the training args and trainer
"""

import abc
import importlib
import importlib.util
import logging
import math
import sys
from abc import abstractmethod
from collections import defaultdict
from dataclasses import dataclass, field
from functools import wraps
from pathlib import Path
from typing import Dict, List, Literal, Optional, Type, Union

import torch
import transformers
from datasets import Dataset
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
from transformers import (
    EarlyStoppingCallback,
    Trainer,
    TrainerCallback,
    TrainingArguments,
)
from transformers.trainer_utils import seed_worker
from transformers.utils import is_sagemaker_mp_enabled
from trl import DPOTrainer

from axolotl.loraplus import create_loraplus_optimizer
from axolotl.monkeypatch.multipack import SUPPORTED_MULTIPACK_MODEL_TYPES
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
from axolotl.utils.callbacks import (
    EvalFirstStepCallback,
    GPUStatsCallback,
    LossWatchDogCallback,
    SaveAxolotlConfigtoWandBCallback,
    SaveBetterTransformerModelCallback,
    bench_eval_callback_factory,
    causal_lm_bench_eval_callback_factory,
    log_prediction_callback_factory,
)
from axolotl.utils.collators import (
    BatchSamplerDataCollatorForSeq2Seq,
    DataCollatorForSeq2Seq,
    MambaDataCollator,
    V2BatchSamplerDataCollatorForSeq2Seq,
)
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
from axolotl.utils.schedulers import (
    get_cosine_schedule_with_min_lr,
    get_cosine_schedule_with_quadratic_warmup,
    get_cosine_schedule_with_warmup_decay_constant,
)

if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp

try:
    import torch._dynamo  # pylint: disable=ungrouped-imports
except ImportError:
    pass

LOG = logging.getLogger("axolotl.core.trainer_builder")


def is_mlflow_available():
    return importlib.util.find_spec("mlflow") is not None


def _sanitize_kwargs_for_tagging(tag_names, kwargs=None):
    if isinstance(tag_names, str):
        tag_names = [tag_names]

    if kwargs is not None:
        if "tags" not in kwargs:
            kwargs["tags"] = tag_names
        elif "tags" in kwargs and isinstance(kwargs["tags"], list):
            kwargs["tags"].extend(tag_names)
        elif "tags" in kwargs and isinstance(kwargs["tags"], str):
            tag_names.append(kwargs["tags"])
            kwargs["tags"] = tag_names

    return kwargs


@dataclass
class AxolotlTrainingArguments(TrainingArguments):
    """
    Extend the base TrainingArguments for axolotl helpers
    """

    model_type: Optional[str] = field(
        default=None, metadata={"help": "HF model configuration model_type."}
    )
    lr_quadratic_warmup: bool = field(
        default=False,
        metadata={"help": "Use quadratic warmup for cosine scheduling."},
    )
    pretraining: bool = field(
        default=False,
        metadata={
            "help": "Indicates to trainer whether we are doing continued pretraining."
        },
    )
    sample_packing: bool = field(
        default=False,
        metadata={"help": "Use sample packing for efficient training."},
    )
    multipack_real_batches: bool = field(
        default=False,
        metadata={"help": "Use real batches for efficient training."},
    )
    eval_sample_packing: Optional[bool] = field(
        default=None,
        metadata={"help": "Use sample packing for efficient evals."},
    )
    sample_packing_efficiency: float = field(
        default=1.0,
        metadata={"help": "Sample packing efficiency for calculating batch length."},
    )
    max_seq_length: int = field(
        default=2048,
        metadata={"help": "The maximum sequence length the model can handle"},
    )
    sample_packing_seq_len_multiplier: int = field(
        default=1,
        metadata={"help": "the multiplier for the max len for packed sequences"},
    )
    relora_steps: Optional[int] = field(
        default=None,
        metadata={"help": "how often to reset for ReLoRA"},
    )
    relora_warmup_steps: Optional[int] = field(
        default=None,
        metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
    )
    relora_anneal_steps: Optional[int] = field(
        default=None,
        metadata={"help": "how many warmup steps to take after reset for ReLoRA"},
    )
    relora_prune_ratio: Optional[float] = field(
        default=0.9,
        metadata={"help": "prune ratio for magnitude pruning of the optimizer"},
    )
    bench_split: Optional[str] = field(
        default="eval", metadata={"help": "The benchmark split to run on"}
    )
    bench_dataset: Optional[str] = field(
        default="pharaouk/dharma-1/dharma_1_mini.json",
        metadata={
            "help": "Benchmark dataset to use: options are `mmlu-zs`, `mmlu-fs`, or the full path to the dataset file"
        },
    )
    do_bench_eval: Optional[bool] = field(
        default=False, metadata={"help": "Whether to run the Benchmark evaluation."}
    )
    do_causal_lm_eval: Optional[bool] = field(
        default=False, metadata={"help": "Whether to run the Causal LM evaluation."}
    )
    max_bench_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "If set, only evaluates on `max_bench_samples` of the benchmark dataset."
        },
    )
    bench_source_max_len: int = field(
        default=2048, metadata={"help": "Maximum source sequence length for bench."}
    )
    dataloader_prefetch_factor: Optional[int] = field(
        default=None,
        metadata={"help": "prefetch_factor argument to the dataloader"},
    )
    cosine_min_lr_ratio: Optional[float] = field(
        default=None,
        metadata={"help": "Minimum learning rate is min_lr_ratio * learning_rate"},
    )
    cosine_constant_lr_ratio: Optional[float] = field(
        default=None,
        metadata={
            "help": "Starting constant learning rate step is cosine_constant_lr_ratio * max_steps"
        },
    )
    loraplus_lr_ratio: Optional[float] = field(
        default=None, metadata={"help": "loraplus learning rate ratio lr_B / lr_A."}
    )
    loraplus_lr_embedding: Optional[float] = field(
        default=1e-6,
        metadata={"help": "loraplus learning rate for lora embedding layers."},
    )
    qlora: bool = field(
        default=False,
        metadata={"help": "whether this is a qlora training"},
    )
    orpo_alpha: Optional[float] = field(
        default=None,
    )


class AxolotlTrainer(Trainer):
    """
    Extend the base Trainer for axolotl helpers
    """

    args = None  # type: AxolotlTrainingArguments
    tag_names = ["axolotl"]

    def __init__(
        self,
        *_args,
        num_epochs=1,
        bench_data_collator=None,
        eval_data_collator=None,
        **kwargs,
    ):
        self.num_epochs = num_epochs
        self.bench_data_collator = bench_data_collator
        self.eval_data_collator = eval_data_collator
        super().__init__(*_args, **kwargs)
        self.train_data_collator = self.data_collator
        self._stored_metrics = defaultdict(lambda: defaultdict(list))
        if self.args.orpo_alpha:
            self.loss_fct = torch.nn.CrossEntropyLoss(reduction="none")

    def create_optimizer(self):
        if self.args.loraplus_lr_ratio is None:
            return super().create_optimizer()

        opt_model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
        if self.optimizer is None:  # pylint: disable=access-member-before-definition
            optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(
                self.args,
                opt_model,
            )

            loraplus_lr_ratio = getattr(self.args, "loraplus_lr_ratio", None)
            loraplus_lr_embedding = getattr(self.args, "loraplus_lr_embedding", None)
            self.optimizer = create_loraplus_optimizer(  # pylint: disable=attribute-defined-outside-init
                opt_model,
                optimizer_cls,
                optimizer_kwargs,
                loraplus_lr_ratio,
                loraplus_lr_embedding,
            )

        if is_sagemaker_mp_enabled():
            self.optimizer = smp.DistributedOptimizer(  # pylint: disable=attribute-defined-outside-init
                self.optimizer
            )

        return self.optimizer

    def create_scheduler(
        self, num_training_steps: int, optimizer: torch.optim.Optimizer = None
    ):
        """
        Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or
        passed as an argument.

        Args:
            num_training_steps (int): The number of training steps to do.
            optimizer (torch.optim.Optimizer): The training optimizer
        """
        use_cosine_quadratic = (
            self.args.lr_scheduler_type == "cosine"
            and self.args.lr_quadratic_warmup is True
        )

        use_cosine_min_lr = (
            self.args.lr_scheduler_type == "cosine"
            and self.args.cosine_min_lr_ratio is not None
        )

        # fmt: off
        if self.lr_scheduler is None:  # type: ignore  # pylint: disable=access-member-before-definition
            # fmt: on
            if use_cosine_quadratic:
                if use_cosine_min_lr:
                    LOG.warning("Both cosine quadratic warmup and min lr detected. Using quadratic warmup.")

                self.lr_scheduler = get_cosine_schedule_with_quadratic_warmup(  # pylint: disable=attribute-defined-outside-init
                    optimizer,
                    num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
                    num_training_steps=num_training_steps,
                )
            elif self.args.cosine_min_lr_ratio and self.args.cosine_constant_lr_ratio and use_cosine_min_lr:
                assert 0 <= self.args.cosine_min_lr_ratio <= 1.0, "cosine_min_lr_ratio must be between 0.0 and 1.0"
                assert 0 <= self.args.cosine_constant_lr_ratio <= 1.0, "cosine_constant_lr_ratio must be between 0.0 and 1.0"
                self.lr_scheduler = get_cosine_schedule_with_warmup_decay_constant(  # pylint: disable=attribute-defined-outside-init
                    optimizer,
                    num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
                    num_training_steps=num_training_steps,
                    min_lr_ratio=self.args.cosine_min_lr_ratio,
                    constant_lr_ratio=self.args.cosine_constant_lr_ratio,
                )
            elif self.args.cosine_min_lr_ratio and use_cosine_min_lr:
                assert 0 <= self.args.cosine_min_lr_ratio <= 1.0, "cosine_min_lr_ratio must be between 0.0 and 1.0"
                self.lr_scheduler = get_cosine_schedule_with_min_lr(  # pylint: disable=attribute-defined-outside-init
                    optimizer,
                    num_warmup_steps=self.args.get_warmup_steps(num_training_steps),
                    num_training_steps=num_training_steps,
                    min_lr_ratio=self.args.cosine_min_lr_ratio,
                )
            else:
                return super().create_scheduler(num_training_steps, optimizer)
        else:
            if use_cosine_quadratic:
                LOG.warning("axolotl's cosine scheduler with quadratic warmup not used (e.g., because of deepspeed).")

            if use_cosine_min_lr:
                LOG.warning("axolotl's cosine scheduler with min lr not used (e.g., because of deepspeed).")

        return self.lr_scheduler

    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
        if self.args.sample_packing and not self.args.pretraining:
            if self.args.multipack_real_batches:
                batch_size = self.args.per_device_train_batch_size
                batch_max_len = self.args.max_seq_length
            else:
                batch_size = 1
                batch_max_len = (
                    self.args.per_device_train_batch_size * self.args.max_seq_length
                )
            return MultipackBatchSampler(
                RandomSampler(self.train_dataset),
                batch_size=batch_size,
                drop_last=True,
                batch_max_len=batch_max_len,
                lengths=get_dataset_lengths(self.train_dataset),
                packing_efficiency_estimate=self.args.sample_packing_efficiency,
            )
        return super()._get_train_sampler()

    def _get_eval_sampler(
        self, eval_dataset: Dataset
    ) -> Optional[torch.utils.data.Sampler]:
        if self.args.sample_packing and self.args.eval_sample_packing is not False:
            if self.args.multipack_real_batches:
                batch_size = self.args.per_device_eval_batch_size
                batch_max_len = self.args.max_seq_length
            else:
                batch_size = 1
                batch_max_len = (
                    self.args.per_device_eval_batch_size * self.args.max_seq_length
                )
            return MultipackBatchSampler(
                SequentialSampler(eval_dataset),
                batch_size=batch_size,
                drop_last=True,
                batch_max_len=batch_max_len,
                lengths=get_dataset_lengths(eval_dataset),
                packing_efficiency_estimate=self.args.sample_packing_efficiency,
            )
        return super()._get_eval_sampler(eval_dataset)

    def get_train_dataloader(self) -> DataLoader:
        if self.args.sample_packing and not self.args.pretraining:
            train_dataset = self.train_dataset
            if "length" in train_dataset.features.keys():
                train_dataset = train_dataset.remove_columns(["length"])
            data_collator = self.data_collator
            dataloader_params = {
                "batch_size": self._train_batch_size,
                "collate_fn": data_collator,
                "num_workers": self.args.dataloader_num_workers,
                "pin_memory": self.args.dataloader_pin_memory,
            }
            if self.args.dataloader_prefetch_factor:
                dataloader_params[
                    "prefetch_factor"
                ] = self.args.dataloader_prefetch_factor

            sampler = self._get_train_sampler()
            if isinstance(sampler, BatchSampler):
                dataloader_params["batch_sampler"] = sampler
                del dataloader_params["batch_size"]
            else:
                dataloader_params["sampler"] = sampler
                dataloader_params["drop_last"] = self.args.dataloader_drop_last
            dataloader_params["worker_init_fn"] = seed_worker

            self.accelerator.even_batches = False
            return self.accelerator.prepare_data_loader(
                DataLoader(train_dataset, **dataloader_params)
            )
        return super().get_train_dataloader()

    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
        if self.args.sample_packing and self.args.eval_sample_packing is False:
            self.data_collator = (  # pylint: disable=attribute-defined-outside-init
                self.eval_data_collator
            )
            dataloader = super().get_eval_dataloader(eval_dataset)
            self.data_collator = (  # pylint: disable=attribute-defined-outside-init
                self.train_data_collator
            )
            return dataloader

        if self.args.sample_packing and self.args.eval_sample_packing is not False:
            eval_dataset = (
                eval_dataset if eval_dataset is not None else self.eval_dataset
            )

            eval_sampler = self._get_eval_sampler(eval_dataset)
            eval_dataset = eval_dataset.remove_columns(["length"])
            data_collator = self.data_collator
            dataloader_params = {
                "batch_size": self.args.eval_batch_size,
                "collate_fn": data_collator,
                "num_workers": self.args.dataloader_num_workers,
                "pin_memory": self.args.dataloader_pin_memory,
            }
            if self.args.dataloader_prefetch_factor:
                dataloader_params[
                    "prefetch_factor"
                ] = self.args.dataloader_prefetch_factor

            if isinstance(eval_sampler, BatchSampler):
                dataloader_params["batch_sampler"] = eval_sampler
                del dataloader_params["batch_size"]
            else:
                dataloader_params["sampler"] = eval_sampler
                dataloader_params["drop_last"] = self.args.dataloader_drop_last

            self.accelerator.even_batches = False
            return self.accelerator.prepare_data_loader(
                DataLoader(eval_dataset, **dataloader_params)
            )

        return super().get_eval_dataloader(eval_dataset)

    def _get_bench_sampler(
        self, bench_dataset: Dataset
    ) -> Optional[torch.utils.data.Sampler]:
        if self.args.world_size <= 1:
            return SequentialSampler(bench_dataset)
        return None

    def get_bench_dataloader(
        self,
        bench_dataset: Dataset,
    ) -> DataLoader:
        dataloader_params = {
            "batch_size": self.args.eval_batch_size,
            "collate_fn": self.bench_data_collator,
            "num_workers": self.args.dataloader_num_workers,
            "pin_memory": self.args.dataloader_pin_memory,
        }
        if self.args.dataloader_prefetch_factor:
            dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor

        if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
            dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
            dataloader_params["drop_last"] = self.args.dataloader_drop_last

        return DataLoader(bench_dataset, **dataloader_params)
        # return self.accelerator.prepare(DataLoader(bench_dataset, **dataloader_params))

    def compute_loss(self, model, inputs, return_outputs=False):
        # use one's weighted cross entropy loss calc
        # if self.args.sample_packing:
        #     labels = inputs.pop("labels")
        #     outputs = model(**inputs)
        #     loss = trainer_weighted_loss(outputs, labels, shift_labels=True)
        #     return (loss, outputs) if return_outputs else loss
        if self.args.orpo_alpha:
            return self.orpo_compute_loss(model, inputs, return_outputs=return_outputs)
        return super().compute_loss(model, inputs, return_outputs=return_outputs)

    def orpo_compute_custom_loss(self, logits, labels):
        logits = logits.contiguous()
        loss = 0.0

        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()

            # Flatten the tokens
            loss = self.loss_fct(shift_logits.transpose(2, 1), shift_labels).mean(
                dim=-1
            )

        return loss

    def orpo_compute_logps(
        self, prompt_attention_mask, chosen_inputs, chosen_attention_mask, logits
    ):
        # Get the shape of chosen_attention_mask[:, :-1]
        chosen_shape = chosen_attention_mask[:, :-1].shape

        # Calculate the padding size
        pad_length = chosen_shape[1] - (prompt_attention_mask.shape[1] - 1)

        # Pad prompt_attention_mask with zeros to match the desired shape
        prompt_attention_mask_padded = torch.nn.functional.pad(
            prompt_attention_mask[:, 1:], (0, pad_length), mode="constant", value=0
        )

        # Perform the subtraction operation
        mask = chosen_attention_mask[:, :-1] > prompt_attention_mask_padded

        per_token_logps = torch.gather(
            logits[:, :-1, :].log_softmax(-1),
            dim=2,
            index=(mask * chosen_inputs[:, 1:]).unsqueeze(2),
        ).squeeze(2)
        return torch.mul(per_token_logps, mask.to(dtype=torch.bfloat16)).sum(dim=1).to(
            dtype=torch.float64
        ) / mask.sum(dim=1).to(dtype=torch.float64)

    def orpo_compute_loss(self, model, inputs, return_outputs=False):
        outputs_neg = model(
            **{
                "input_ids": inputs["rejected_input_ids"],
                "attention_mask": inputs["rejected_attention_mask"],
                "labels": inputs["rejected_labels"],
            },
            output_hidden_states=True,
        )
        outputs_pos = model(
            **{
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "labels": inputs["labels"],
            },
            output_hidden_states=True,
        )

        # Calculate NLL loss
        pos_loss = self.orpo_compute_custom_loss(
            logits=outputs_pos.logits, labels=inputs["input_ids"]
        )

        # Calculate Log Probability
        pos_prob = self.orpo_compute_logps(
            prompt_attention_mask=inputs["prompt_attention_mask"],
            chosen_inputs=inputs["input_ids"],
            chosen_attention_mask=inputs["attention_mask"],
            logits=outputs_pos.logits,
        )
        neg_prob = self.orpo_compute_logps(
            prompt_attention_mask=inputs["prompt_attention_mask"],
            chosen_inputs=inputs["rejected_input_ids"],
            chosen_attention_mask=inputs["rejected_attention_mask"],
            logits=outputs_neg.logits,
        )

        # Calculate log odds
        log_odds = (pos_prob - neg_prob) - (
            torch.log(1 - torch.exp(pos_prob)) - torch.log(1 - torch.exp(neg_prob))
        )
        sig_ratio = torch.nn.functional.sigmoid(log_odds)
        ratio = torch.log(sig_ratio)

        # Calculate the Final Loss
        loss = torch.mean(pos_loss - self.args.orpo_alpha * ratio).to(
            dtype=torch.bfloat16
        )

        metrics = {}
        metrics["chosen_geometric_mean"] = torch.mean(pos_prob).cpu().item()
        metrics["rejected_geometric_mean"] = torch.mean(neg_prob).cpu().item()
        metrics["log_odds_ratio"] = torch.mean(ratio).cpu().item()
        metrics["log_odds"] = torch.mean(log_odds).cpu().item()
        self.store_metrics(metrics, train_eval="train")

        return (loss, outputs_pos) if return_outputs else loss

    @wraps(Trainer.push_to_hub)
    def push_to_hub(self, *args, **kwargs) -> str:
        """
        Overwrite the `push_to_hub` method in order to force-add the tags when pushing the
        model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details.
        """
        kwargs = _sanitize_kwargs_for_tagging(tag_names=self.tag_names, kwargs=kwargs)

        return super().push_to_hub(*args, **kwargs)

    @wraps(Trainer.create_accelerator_and_postprocess)
    def create_accelerator_and_postprocess(self):
        res = super().create_accelerator_and_postprocess()

        if self.is_fsdp_enabled:
            if (
                "limit_all_gathers" in self.args.fsdp_config
                and self.args.fsdp_config["limit_all_gathers"]
            ):
                self.accelerator.state.fsdp_plugin.limit_all_gathers = True

        return res

    def log(self, logs: Dict[str, float]) -> None:
        """
        Log `logs` on the various objects watching training, including stored metrics.

        Args:
            logs (`Dict[str, float]`):
                The values to log.
        """
        # logs either has 'loss' or 'eval_loss'
        train_eval = "train" if "loss" in logs else "eval"
        # Add averaged stored metrics to logs
        for key, metrics in self._stored_metrics[train_eval].items():
            logs[key] = torch.tensor(metrics).mean().item()
        del self._stored_metrics[train_eval]
        return super().log(logs)

    def store_metrics(
        self, metrics: Dict[str, float], train_eval: Literal["train", "eval"] = "train"
    ) -> None:
        for key, value in metrics.items():
            self._stored_metrics[train_eval][key].append(value)


class AxolotlMambaTrainer(AxolotlTrainer):
    """
    Mamba specific trainer to handle loss calculation
    """

    tag_names = ["axolotl", "mamba"]

    def compute_loss(
        self,
        model,
        inputs,
        return_outputs=False,  # pylint: disable=unused-argument
    ):
        input_ids = inputs.pop("input_ids")
        lm_logits = model(input_ids).logits

        labels = input_ids.to(lm_logits.device)
        shift_logits = lm_logits[:, :-1, :].contiguous()
        labels = labels[:, 1:].contiguous()

        loss_fct = torch.nn.CrossEntropyLoss()
        lm_loss = loss_fct(
            shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
        )

        return lm_loss


class OneCycleLRSchedulerTrainer(AxolotlTrainer):
    """
    Trainer subclass that uses the OneCycleLR scheduler
    """

    tag_names = ["axolotl", "onecycle"]

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr_scheduler = None

    def create_scheduler(
        self,
        num_training_steps: int,
        optimizer: Optional[torch.optim.Optimizer] = None,
    ):
        optimizer = self.optimizer if optimizer is None else optimizer
        num_warmup_steps = self.args.get_warmup_steps(num_training_steps)
        pct_start = num_warmup_steps / num_training_steps

        self.lr_scheduler = OneCycleLR(
            optimizer,
            max_lr=self.args.learning_rate,
            total_steps=num_training_steps,
            pct_start=pct_start,
            div_factor=6,
        )

        return self.lr_scheduler


class ReLoRATrainer(AxolotlTrainer):
    """
    Trainer subclass that uses the OneCycleLR scheduler
    """

    tag_names = ["axolotl", "relora"]

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr_scheduler = None

    def create_scheduler(
        self,
        num_training_steps: int,
        optimizer: Optional[torch.optim.Optimizer] = None,
    ):
        optimizer = self.optimizer if optimizer is None else optimizer
        lr_scheduler = super().create_scheduler(num_training_steps, optimizer)

        if self.args.relora_steps:
            warmup_steps = (
                self.args.relora_warmup_steps if self.args.relora_warmup_steps else 10
            )
            anneal_steps = (
                self.args.relora_anneal_steps if self.args.relora_anneal_steps else 1
            )
            self.lr_scheduler = ReLoRAScheduler(
                optimizer,
                lr_scheduler,
                self.args.relora_steps,
                anneal_steps,
                warmup_steps,
            )
        else:
            self.lr_scheduler = lr_scheduler

        return self.lr_scheduler


class AxolotlDPOTrainer(DPOTrainer):
    """
    Extend the base DPOTrainer for axolotl helpers
    """

    tag_names = ["axolotl", "dpo"]

    @wraps(DPOTrainer.push_to_hub)
    def push_to_hub(self, *args, **kwargs) -> str:
        """
        Overwrite the `push_to_hub` method in order to force-add the tags when pushing the
        model on the Hub. Please refer to `~transformers.Trainer.push_to_hub` for more details.
        """
        kwargs = _sanitize_kwargs_for_tagging(tag_names=self.tag_names, kwargs=kwargs)

        return super().push_to_hub(*args, **kwargs)


class TrainerBuilderBase(abc.ABC):
    """
    Base class for trainer builder
    """

    _train_dataset = None
    _eval_dataset = None
    _model_ref = None
    _peft_config = None

    def __init__(self, cfg, model, tokenizer):
        self.cfg = cfg
        self.model = model
        self.tokenizer = tokenizer

        # in case the model supports tagging, add the axolotl tag.
        # This makes sure the tag is correctly pushed even if a user calls
        # model.push_to_hub instad of  trainer.push_to_hub.
        if hasattr(model, "add_model_tags"):
            model.add_model_tags(["axolotl"])

    @property
    def model_ref(self):
        return self._model_ref

    @model_ref.setter
    def model_ref(self, model):
        self._model_ref = model

    @property
    def train_dataset(self):
        return self._train_dataset

    @train_dataset.setter
    def train_dataset(self, dataset):
        self._train_dataset = dataset

    @property
    def eval_dataset(self):
        return self._eval_dataset

    @eval_dataset.setter
    def eval_dataset(self, dataset):
        self._eval_dataset = dataset

    @property
    def peft_config(self):
        return self._peft_config

    @peft_config.setter
    def peft_config(self, peft_config):
        self._peft_config = peft_config

    @abstractmethod
    def build(self, total_num_steps):
        pass

    def get_callbacks(self) -> List[TrainerCallback]:
        callbacks = []
        if self.cfg.use_wandb:
            callbacks.append(
                SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
            )

        return callbacks

    @abstractmethod
    def get_post_trainer_create_callbacks(self, trainer):
        """
        Callbacks added after the trainer is created, usually b/c these need access to the trainer
        """

    def hook_pre_create_training_args(self, training_arguments_kwargs):
        # TODO
        return training_arguments_kwargs

    def hook_post_create_training_args(self, training_arguments):
        # TODO
        return training_arguments

    def hook_pre_create_trainer(self, trainer_kwargs, trainer_cls):
        # TODO
        return trainer_kwargs, trainer_cls

    def hook_post_create_trainer(self, trainer):
        # TODO
        return trainer


class HFCausalTrainerBuilder(TrainerBuilderBase):
    """
    Build the HuggingFace training args/trainer for Causal models
    """

    def get_callbacks(self):
        callbacks = super().get_callbacks()
        callbacks.append(GPUStatsCallback(self.cfg))
        callbacks.append(EvalFirstStepCallback())

        if self.cfg.relora_steps:
            callbacks.append(ReLoRACallback(self.cfg))

        if (
            hasattr(self.model, "use_bettertransformer")
            and self.model.use_bettertransformer is True
        ):
            callbacks.append(SaveBetterTransformerModelCallback())

        if self.cfg.use_wandb:
            callbacks.append(
                SaveAxolotlConfigtoWandBCallback(self.cfg.axolotl_config_path)
            )
        if self.cfg.use_mlflow and is_mlflow_available():
            from axolotl.utils.callbacks.mlflow_ import (
                SaveAxolotlConfigtoMlflowCallback,
            )

            callbacks.append(
                SaveAxolotlConfigtoMlflowCallback(self.cfg.axolotl_config_path)
            )

        if self.cfg.loss_watchdog_threshold is not None:
            callbacks.append(LossWatchDogCallback(self.cfg))

        return callbacks

    def get_post_trainer_create_callbacks(self, trainer):
        callbacks = []
        if self.cfg.use_wandb and self.cfg.eval_table_size > 0:
            LogPredictionCallback = log_prediction_callback_factory(
                trainer, self.tokenizer
            )
            callbacks.append(LogPredictionCallback(self.cfg))

        if self.cfg.do_bench_eval:
            callbacks.append(bench_eval_callback_factory(trainer, self.tokenizer))
        if self.cfg.do_causal_lm_eval:
            CausalLMBenchEvalCallback = causal_lm_bench_eval_callback_factory(
                trainer, self.tokenizer
            )
            callbacks.append(CausalLMBenchEvalCallback(self.cfg))

        if self.cfg.early_stopping_patience:
            early_stop_cb = EarlyStoppingCallback(
                self.cfg.early_stopping_patience,
            )
            callbacks.append(early_stop_cb)

        return callbacks

    def _get_trainer_cls(self):
        if self.cfg.lr_scheduler == "one_cycle" and (
            self.cfg.fsdp or self.cfg.adapter == "qlora"
        ):
            return OneCycleLRSchedulerTrainer
        if self.cfg.relora_steps:
            return ReLoRATrainer
        if self.cfg.model_config_type == "mamba":
            return AxolotlMambaTrainer
        return AxolotlTrainer

    def build(self, total_num_steps):
        warmup_steps = None
        if self.cfg.warmup_steps is not None:
            warmup_steps = self.cfg.warmup_steps
        elif self.cfg.warmup_ratio is not None:
            warmup_steps = max(int(self.cfg.warmup_ratio * total_num_steps), 0)
        else:
            warmup_steps = min(int(0.03 * total_num_steps), 100)

        logging_steps = (
            self.cfg.logging_steps
            if self.cfg.logging_steps is not None
            else max(min(int(0.005 * total_num_steps), 10), 1)
        )

        training_arguments_kwargs = {}
        if self.cfg.bf16 == "full":
            training_arguments_kwargs["bf16_full_eval"] = True
        else:
            training_arguments_kwargs["bf16"] = self.cfg.bf16
        training_arguments_kwargs["fp16"] = (
            self.cfg.fp16 and not self.cfg.bf16
        ) or False
        training_arguments_kwargs["tf32"] = self.cfg.tf32
        training_arguments_kwargs["warmup_steps"] = warmup_steps
        training_arguments_kwargs["logging_steps"] = logging_steps

        if self.cfg.seed:
            training_arguments_kwargs["seed"] = self.cfg.seed

        if self.cfg.gradient_checkpointing:
            training_arguments_kwargs[
                "gradient_checkpointing"
            ] = self.cfg.gradient_checkpointing
            if self.cfg.gradient_checkpointing_kwargs is not None:
                training_arguments_kwargs[
                    "gradient_checkpointing_kwargs"
                ] = self.cfg.gradient_checkpointing_kwargs
        if self.cfg.fsdp:
            training_arguments_kwargs["fsdp"] = self.cfg.fsdp
            if self.cfg.fsdp_config:
                training_arguments_kwargs["fsdp_config"] = dict(self.cfg.fsdp_config)

        if self.cfg.adapter == "qlora":
            training_arguments_kwargs["qlora"] = True

        # deepspeed
        if self.cfg.deepspeed:
            training_arguments_kwargs["deepspeed"] = self.cfg.deepspeed

        if self.cfg.lr_quadratic_warmup is not None:
            training_arguments_kwargs[
                "lr_quadratic_warmup"
            ] = self.cfg.lr_quadratic_warmup

        if self.cfg.adam_beta1:
            training_arguments_kwargs["adam_beta1"] = self.cfg.adam_beta1
        if self.cfg.adam_beta2:
            training_arguments_kwargs["adam_beta2"] = self.cfg.adam_beta2
        if self.cfg.adam_epsilon:
            training_arguments_kwargs["adam_epsilon"] = self.cfg.adam_epsilon
        if self.cfg.max_grad_norm:
            training_arguments_kwargs["max_grad_norm"] = self.cfg.max_grad_norm

        if self.cfg.hub_model_id:
            training_arguments_kwargs["hub_model_id"] = self.cfg.hub_model_id
            training_arguments_kwargs["push_to_hub"] = True
            training_arguments_kwargs["hub_private_repo"] = True
            training_arguments_kwargs["hub_always_push"] = True

            if self.cfg.hub_strategy:
                training_arguments_kwargs["hub_strategy"] = self.cfg.hub_strategy

        if self.cfg.save_safetensors is not None:
            training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors

        if self.cfg.sample_packing_eff_est:
            training_arguments_kwargs[
                "sample_packing_efficiency"
            ] = self.cfg.sample_packing_eff_est

        if self.cfg.dataloader_pin_memory is not None:
            training_arguments_kwargs[
                "dataloader_pin_memory"
            ] = self.cfg.dataloader_pin_memory
        if self.cfg.dataloader_num_workers is not None:
            training_arguments_kwargs[
                "dataloader_num_workers"
            ] = self.cfg.dataloader_num_workers
        if self.cfg.dataloader_prefetch_factor is not None:
            training_arguments_kwargs[
                "dataloader_prefetch_factor"
            ] = self.cfg.dataloader_prefetch_factor
        if self.cfg.dataloader_drop_last is not None:
            training_arguments_kwargs[
                "dataloader_drop_last"
            ] = self.cfg.dataloader_drop_last
        elif self.cfg.sample_packing and self.cfg.eval_sample_packing is False:
            training_arguments_kwargs["dataloader_drop_last"] = True

        if self.cfg.remove_unused_columns is not None:
            training_arguments_kwargs[
                "remove_unused_columns"
            ] = self.cfg.remove_unused_columns

        if not self.cfg.test_datasets and self.cfg.val_set_size == 0:
            # no eval set, so don't eval
            training_arguments_kwargs["evaluation_strategy"] = "no"
        elif self.cfg.eval_steps:
            training_arguments_kwargs["evaluation_strategy"] = "steps"
            training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
        elif self.cfg.evaluation_strategy:
            training_arguments_kwargs[
                "evaluation_strategy"
            ] = self.cfg.evaluation_strategy
        else:
            # we have an eval set, but no steps defined, default to use epoch
            training_arguments_kwargs["evaluation_strategy"] = "epoch"

        if self.cfg.save_steps:
            training_arguments_kwargs["save_strategy"] = "steps"
            training_arguments_kwargs["save_steps"] = self.cfg.save_steps
        elif self.cfg.save_strategy:
            training_arguments_kwargs["save_strategy"] = self.cfg.save_strategy
        else:
            # default to saving each epoch if not defined
            training_arguments_kwargs["save_strategy"] = "epoch"

        if self.cfg.do_bench_eval:
            training_arguments_kwargs["do_bench_eval"] = self.cfg.do_bench_eval
            if self.cfg.bench_dataset:
                training_arguments_kwargs["bench_dataset"] = self.cfg.bench_dataset
        if self.cfg.do_causal_lm_eval:
            training_arguments_kwargs["do_causal_lm_eval"] = self.cfg.do_causal_lm_eval
        if self.cfg.metric_for_best_model:
            training_arguments_kwargs[
                "metric_for_best_model"
            ] = self.cfg.metric_for_best_model
        if self.cfg.greater_is_better:
            training_arguments_kwargs["greater_is_better"] = self.cfg.greater_is_better

        if self.cfg.torch_compile:
            if torch.__version__ < "2.1.0":  # pylint: disable=protected-access
                LOG.warning("torch>=2.1.0 required for torch_compile to work properly")
            elif torch._dynamo:  # pylint: disable=protected-access
                torch._dynamo.config.suppress_errors = (  # pylint: disable=protected-access
                    True
                )
                training_arguments_kwargs["torch_compile"] = self.cfg.torch_compile
                if self.cfg.torch_compile_backend:
                    training_arguments_kwargs[
                        "torch_compile_backend"
                    ] = self.cfg.torch_compile_backend

        # DDP Config
        if self.cfg.ddp_timeout:
            training_arguments_kwargs["ddp_timeout"] = self.cfg.ddp_timeout
        # see https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
        if self.cfg.ddp_bucket_cap_mb:
            training_arguments_kwargs["ddp_bucket_cap_mb"] = self.cfg.ddp_bucket_cap_mb
        if self.cfg.ddp_broadcast_buffers is not None:
            training_arguments_kwargs[
                "ddp_broadcast_buffers"
            ] = self.cfg.ddp_broadcast_buffers

        # these are all the "standard" kwargs that are def used
        training_arguments_kwargs["max_steps"] = (
            total_num_steps if self.cfg.max_steps else -1
        )
        training_arguments_kwargs["max_seq_length"] = self.cfg.sequence_len
        training_arguments_kwargs[
            "per_device_train_batch_size"
        ] = self.cfg.micro_batch_size
        if self.cfg.eval_batch_size:
            training_arguments_kwargs[
                "per_device_eval_batch_size"
            ] = self.cfg.eval_batch_size
        training_arguments_kwargs[
            "gradient_accumulation_steps"
        ] = self.cfg.gradient_accumulation_steps
        training_arguments_kwargs[
            "eval_accumulation_steps"
        ] = self.cfg.gradient_accumulation_steps
        training_arguments_kwargs["num_train_epochs"] = self.cfg.num_epochs
        training_arguments_kwargs["learning_rate"] = self.cfg.learning_rate
        training_arguments_kwargs["output_dir"] = self.cfg.output_dir
        training_arguments_kwargs["save_total_limit"] = (
            self.cfg.save_total_limit if self.cfg.save_total_limit else 4
        )
        training_arguments_kwargs["load_best_model_at_end"] = (
            (
                self.cfg.load_best_model_at_end is not False
                or self.cfg.early_stopping_patience
            )
            and (
                (not self.cfg.test_datasets and self.cfg.val_set_size > 0)
                or (self.cfg.test_datasets and self.cfg.val_set_size == 0)
            )
            and self.cfg.save_steps
            and self.cfg.eval_steps
            and self.cfg.save_steps % self.cfg.eval_steps == 0
        ) or False
        training_arguments_kwargs["ddp_find_unused_parameters"] = (
            False if self.cfg.ddp else None
        )
        training_arguments_kwargs["group_by_length"] = self.cfg.group_by_length
        report_to = None
        if self.cfg.use_wandb:
            report_to = "wandb"
        if self.cfg.use_mlflow:
            report_to = "mlflow"
        training_arguments_kwargs["report_to"] = report_to
        training_arguments_kwargs["run_name"] = (
            self.cfg.wandb_name if self.cfg.use_wandb else None
        )
        training_arguments_kwargs["optim"] = (
            self.cfg.optimizer if self.cfg.optimizer else "adamw_hf"
        )
        if self.cfg.optim_args:
            if isinstance(self.cfg.optim_args, dict):
                optim_args = ",".join(
                    [f"{key}={value}" for key, value in self.cfg.optim_args.items()]
                )
            else:
                optim_args = self.cfg.optim_args
            training_arguments_kwargs["optim_args"] = optim_args
        if self.cfg.optim_target_modules:
            training_arguments_kwargs[
                "optim_target_modules"
            ] = self.cfg.optim_target_modules
        training_arguments_kwargs["loraplus_lr_ratio"] = self.cfg.loraplus_lr_ratio
        training_arguments_kwargs[
            "loraplus_lr_embedding"
        ] = self.cfg.loraplus_lr_embedding
        training_arguments_kwargs["lr_scheduler_type"] = (
            self.cfg.lr_scheduler
            if self.cfg.lr_scheduler
            and self.cfg.lr_scheduler not in ("one_cycle", "log_sweep")
            else "cosine"
        )
        training_arguments_kwargs["lr_scheduler_kwargs"] = (
            self.cfg.lr_scheduler_kwargs if self.cfg.lr_scheduler_kwargs else {}
        )
        training_arguments_kwargs["cosine_min_lr_ratio"] = self.cfg.cosine_min_lr_ratio
        training_arguments_kwargs[
            "cosine_constant_lr_ratio"
        ] = self.cfg.cosine_constant_lr_ratio
        training_arguments_kwargs["weight_decay"] = (
            self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
        )
        training_arguments_kwargs["sample_packing"] = (
            self.cfg.sample_packing if self.cfg.sample_packing else False
        )
        training_arguments_kwargs["multipack_real_batches"] = (
            self.cfg.flash_attention is not True
        )
        training_arguments_kwargs["eval_sample_packing"] = (
            self.cfg.sample_packing
            if self.cfg.eval_sample_packing is not False
            else False
        )
        training_arguments_kwargs[
            "sample_packing_seq_len_multiplier"
        ] = self.cfg.micro_batch_size
        if self.cfg.relora_steps:
            training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
            training_arguments_kwargs[
                "relora_warmup_steps"
            ] = self.cfg.relora_warmup_steps
            if self.cfg.relora_anneal_steps:
                training_arguments_kwargs[
                    "relora_anneal_steps"
                ] = self.cfg.relora_anneal_steps
            if self.cfg.relora_prune_ratio:
                training_arguments_kwargs[
                    "relora_prune_ratio"
                ] = self.cfg.relora_prune_ratio

        training_arguments_kwargs = self.hook_pre_create_training_args(
            training_arguments_kwargs
        )
        training_arguments_kwargs["model_type"] = self.cfg.model_config_type
        training_arguments_kwargs["pretraining"] = bool(self.cfg.pretraining_dataset)

        if self.cfg.rl == "orpo":
            training_arguments_kwargs["orpo_alpha"] = self.cfg.orpo_alpha

        if self.cfg.neftune_noise_alpha is not None:
            training_arguments_kwargs[
                "neftune_noise_alpha"
            ] = self.cfg.neftune_noise_alpha

        trainer_kwargs = {}

        if self.cfg.optimizer == "lion_pytorch":
            from lion_pytorch import Lion

            lion_kwargs = {"lr": training_arguments_kwargs["learning_rate"]}
            if "weight_decay" in training_arguments_kwargs:
                lion_kwargs["weight_decay"] = training_arguments_kwargs["weight_decay"]

            if (
                "adam_beta1" in training_arguments_kwargs
                and "adam_beta2" in training_arguments_kwargs
            ):
                lion_kwargs["betas"] = (
                    training_arguments_kwargs["adam_beta1"],
                    training_arguments_kwargs["adam_beta2"],
                )

            trainer_kwargs["optimizers"] = (
                Lion(params=self.model.parameters(), **lion_kwargs),
                None,
            )
            # Set default so transformers doesn't throw
            training_arguments_kwargs["optim"] = "adamw_hf"

        if self.cfg.optimizer == "adamw_anyprecision":
            if Path(self.cfg.torchdistx_path).exists():
                sys.path.append(self.cfg.torchdistx_path)
                importlib.import_module("torchdistx")

        training_args = (
            AxolotlTrainingArguments(  # pylint: disable=unexpected-keyword-arg
                **training_arguments_kwargs,
            )
        )
        training_args = self.hook_post_create_training_args(training_args)

        data_collator_kwargs = {
            "padding": True,  # True/"longest" is the default
        }
        if self.cfg.pad_to_sequence_len:
            data_collator_kwargs["pad_to_multiple_of"] = 64 * math.ceil(
                self.cfg.sequence_len / 64
            )
        else:
            # A100 is best at 64, while others at 8. Let's use the larger so we don't have to check
            # https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
            data_collator_kwargs["pad_to_multiple_of"] = 64

        trainer_cls = self._get_trainer_cls()
        trainer_kwargs, trainer_cls = self.hook_pre_create_trainer(
            trainer_kwargs, trainer_cls
        )
        trainer = trainer_cls(
            model=self.model,
            train_dataset=self.train_dataset,
            eval_dataset=self.eval_dataset,
            args=training_args,
            data_collator=self.build_collator(training_args, **data_collator_kwargs),
            eval_data_collator=self.build_collator(
                training_args, is_eval=True, **data_collator_kwargs
            ),
            bench_data_collator=transformers.DataCollatorForSeq2Seq(
                self.tokenizer,
                return_tensors="pt",
                **data_collator_kwargs,
            ),
            callbacks=self.get_callbacks(),
            num_epochs=self.cfg.num_epochs,
            **trainer_kwargs,
        )
        trainer = self.hook_post_create_trainer(trainer)
        for callback in self.get_post_trainer_create_callbacks(trainer):
            trainer.add_callback(callback)

        if self.cfg.deepspeed and self.cfg.sample_packing:
            trainer.accelerator.state.deepspeed_plugin.deepspeed_config[
                "train_micro_batch_size_per_gpu"
            ] = self.cfg.micro_batch_size

        return trainer

    def build_collator(
        self, training_args: AxolotlTrainingArguments, is_eval=False, **kwargs
    ):
        if training_args.pretraining:
            return None

        if self.cfg.model_config_type == "mamba":
            return MambaDataCollator(tokenizer=self.tokenizer)

        use_batch_sampler_collator = False
        if is_eval is False and training_args.sample_packing:
            use_batch_sampler_collator = True
        if is_eval and training_args.eval_sample_packing:
            use_batch_sampler_collator = True

        collator: Type[
            Union[
                V2BatchSamplerDataCollatorForSeq2Seq,
                BatchSamplerDataCollatorForSeq2Seq,
                DataCollatorForSeq2Seq,
            ]
        ]
        if use_batch_sampler_collator:
            if self.cfg.model_config_type in SUPPORTED_MULTIPACK_MODEL_TYPES:
                collator = V2BatchSamplerDataCollatorForSeq2Seq
            elif (
                self.cfg.model_config_type in ["llama"]
                and self.cfg.flash_attention is not True
            ):
                collator = V2BatchSamplerDataCollatorForSeq2Seq
            else:
                collator = BatchSamplerDataCollatorForSeq2Seq
        else:
            collator = DataCollatorForSeq2Seq

        return collator(
            self.tokenizer,
            return_tensors="pt",
            **kwargs,
        )


class HFDPOTrainerBuilder(TrainerBuilderBase):
    """
    Trainer factory class for DPO Trainer
    """

    def get_callbacks(self):
        callbacks = super().get_callbacks()
        return callbacks

    def get_post_trainer_create_callbacks(self, trainer):
        callbacks = []
        return callbacks

    def build_training_arguments(self, total_num_steps):
        training_args_kwargs = {}
        for arg in [
            "adam_beta1",
            "adam_beta2",
            "adam_epsilon",
            "dataloader_num_workers",
            "dataloader_pin_memory",
        ]:
            if hasattr(self.cfg, arg) and getattr(self.cfg, arg) is not None:
                training_args_kwargs[arg] = getattr(self.cfg, arg)

        if self.cfg.hub_model_id:
            training_args_kwargs["hub_model_id"] = self.cfg.hub_model_id
            training_args_kwargs["push_to_hub"] = True
            training_args_kwargs["hub_private_repo"] = True
            training_args_kwargs["hub_always_push"] = True

            if self.cfg.hub_strategy:
                training_args_kwargs["hub_strategy"] = self.cfg.hub_strategy

        if self.cfg.save_safetensors is not None:
            training_args_kwargs["save_safetensors"] = self.cfg.save_safetensors

        if self.eval_dataset:
            training_args_kwargs["evaluation_strategy"] = "steps"
            training_args_kwargs["eval_steps"] = self.cfg.eval_steps
        else:
            training_args_kwargs["evaluation_strategy"] = "no"
        if self.cfg.bf16 or self.cfg.bfloat16:
            training_args_kwargs["bf16"] = True

        training_args_kwargs["lr_scheduler_type"] = (
            self.cfg.lr_scheduler if self.cfg.lr_scheduler else "cosine"
        )
        training_args_kwargs["lr_scheduler_kwargs"] = (
            self.cfg.lr_scheduler_kwargs if self.cfg.lr_scheduler_kwargs else {}
        )
        if self.cfg.remove_unused_columns is not None:
            training_args_kwargs[
                "remove_unused_columns"
            ] = self.cfg.remove_unused_columns
        else:
            training_args_kwargs["remove_unused_columns"] = False

        if self.cfg.dataloader_pin_memory is not None:
            training_args_kwargs[
                "dataloader_pin_memory"
            ] = self.cfg.dataloader_pin_memory
        if self.cfg.dataloader_num_workers is not None:
            training_args_kwargs[
                "dataloader_num_workers"
            ] = self.cfg.dataloader_num_workers
        if self.cfg.dataloader_prefetch_factor is not None:
            training_args_kwargs[
                "dataloader_prefetch_factor"
            ] = self.cfg.dataloader_prefetch_factor
        if self.cfg.gradient_checkpointing:
            training_args_kwargs[
                "gradient_checkpointing"
            ] = self.cfg.gradient_checkpointing
            if self.cfg.gradient_checkpointing_kwargs is not None:
                training_args_kwargs[
                    "gradient_checkpointing_kwargs"
                ] = self.cfg.gradient_checkpointing_kwargs
            else:
                training_args_kwargs["gradient_checkpointing_kwargs"] = {
                    "use_reentrant": False
                }

        # set save_strategy and save_steps
        if self.cfg.save_steps:
            training_args_kwargs["save_strategy"] = "steps"
            training_args_kwargs["save_steps"] = self.cfg.save_steps
        elif self.cfg.save_strategy:
            training_args_kwargs["save_strategy"] = self.cfg.save_strategy
        else:
            # default to saving each epoch if not defined
            training_args_kwargs["save_strategy"] = "epoch"

        training_args = TrainingArguments(
            per_device_train_batch_size=self.cfg.micro_batch_size,
            max_steps=self.cfg.max_steps or total_num_steps,
            gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
            learning_rate=self.cfg.learning_rate,
            output_dir=self.cfg.output_dir,
            warmup_steps=self.cfg.warmup_steps,
            logging_first_step=True,
            logging_steps=1,
            optim=self.cfg.optimizer,
            save_total_limit=self.cfg.save_total_limit or 5,
            **training_args_kwargs,
        )

        return training_args

    def build(self, total_num_steps):
        training_args = self.build_training_arguments(total_num_steps)
        dpo_trainer_kwargs = {}
        if self.cfg.rl == "ipo":
            dpo_trainer_kwargs["loss_type"] = "ipo"
            if self.cfg.dpo_label_smoothing:
                dpo_trainer_kwargs["label_smoothing"] = self.cfg.dpo_label_smoothing
        elif self.cfg.rl == "kto_pair":
            dpo_trainer_kwargs["loss_type"] = "kto_pair"
        if self.eval_dataset:
            dpo_trainer_kwargs["eval_dataset"] = self.eval_dataset
        if self.cfg.adapter and self.peft_config:
            dpo_trainer_kwargs["peft_config"] = self.peft_config
        if self.cfg.precompute_ref_log_probs is not None:
            dpo_trainer_kwargs[
                "precompute_ref_log_probs"
            ] = self.cfg.precompute_ref_log_probs
        dpo_trainer = AxolotlDPOTrainer(
            self.model,
            self.model_ref,
            args=training_args,
            beta=self.cfg.dpo_beta or 0.1,
            train_dataset=self.train_dataset,
            tokenizer=self.tokenizer,
            max_length=self.cfg.sequence_len,
            max_target_length=None,
            max_prompt_length=self.cfg.sequence_len,
            generate_during_eval=True,
            callbacks=self.get_callbacks(),
            **dpo_trainer_kwargs,
        )
        dpo_trainer = self.hook_post_create_trainer(dpo_trainer)
        for callback in self.get_post_trainer_create_callbacks(dpo_trainer):
            dpo_trainer.add_callback(callback)

        return dpo_trainer


class HFPPOTrainerBuilder(TrainerBuilderBase):
    """
    HF Factory class for PPO Trainer
    """

    def get_callbacks(self):
        callbacks = []
        return callbacks

    def get_post_trainer_create_callbacks(self, trainer):
        callbacks = []
        return callbacks

    def build(self, total_num_steps):
        # build PPOConfig
        pass