winglian's picture
WIP large refactor to make finetune script a little more manageable (#3)
6045345 unverified
raw
history blame
4.85 kB
import logging
from hashlib import md5
from pathlib import Path
from datasets import load_from_disk, load_dataset, IterableDataset, Dataset
from axolotl.datasets import TokenizedPromptDataset, ConstantLengthDataset
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
GPTeacherPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
ShareGPTPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
GPTeacherPrompter,
ReflectAlpacaPrompter,
ShareGPTPrompter,
)
def load_prepare_datasets(tokenizer, cfg, default_dataset_prepared_path):
max_packed_sequence_len = (
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
)
max_packed_sequence_len = min(
max_packed_sequence_len, cfg.sequence_len
) # make sure we don't accidentally set it larger than sequence_len
ds_hash = str(
md5(
(
str(max_packed_sequence_len)
+ "@"
+ "|".join(sorted([f"{d.path}:{d.type}" for d in cfg.datasets]))
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
if any(prepared_ds_path.glob("*")):
logging.info("Loading prepared dataset from disk...")
dataset = load_from_disk(str(prepared_ds_path))
logging.info("Prepared dataset loaded from disk...")
else:
logging.info("Loading raw datasets...")
datasets = []
for d in cfg.datasets:
ds_from_hub = False
try:
load_dataset(d.path, streaming=True)
ds_from_hub = True
except FileNotFoundError:
pass
# prefer local dataset, even if hub exists
if Path(d.path).exists():
ds: IterableDataset = load_dataset(
"json", data_files=d.path, streaming=True, split=None
)
elif ds_from_hub:
ds = load_dataset(d.path, streaming=True)
else:
raise Exception("unhandled dataset load")
if d.type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "oasst":
ds_strategy = OpenAssistantPromptTokenizingStrategy(
AlpacaPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "reflection":
ds_strategy = AlpacaReflectionPTStrategy(
ReflectAlpacaPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
elif d.type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(
ShareGPTPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds["train"])
datasets.append(ds_wrapper)
else:
logging.error(f"unhandled prompt tokenization strategy: {d.type}")
constant_len_dataset = ConstantLengthDataset(
tokenizer,
datasets,
seq_length=max_packed_sequence_len,
)
logging.info("merging, packing, shuffling, and splitting master dataset")
dataset = Dataset.from_list([_ for _ in constant_len_dataset]).train_test_split(
test_size=cfg.val_set_size, shuffle=True, seed=42
)
if cfg.local_rank == 0:
logging.info(f"Saving prepared dataset to disk... {prepared_ds_path}")
dataset.save_to_disk(prepared_ds_path)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
return train_dataset, eval_dataset