cleanup verbosity a bit
Browse files- src/axolotl/train.py +9 -2
- src/axolotl/utils/distributed.py +11 -0
- src/axolotl/utils/trainer.py +15 -9
src/axolotl/train.py
CHANGED
@@ -18,6 +18,7 @@ from axolotl.common.cli import TrainerCliArgs
|
|
18 |
from axolotl.logging_config import configure_logging
|
19 |
from axolotl.monkeypatch import neft_embeddings
|
20 |
from axolotl.utils.dict import DictDefault
|
|
|
21 |
from axolotl.utils.models import load_model, load_tokenizer
|
22 |
from axolotl.utils.trainer import setup_trainer
|
23 |
|
@@ -44,7 +45,10 @@ def train(
|
|
44 |
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
|
45 |
):
|
46 |
# load the tokenizer first
|
47 |
-
|
|
|
|
|
|
|
48 |
tokenizer = load_tokenizer(cfg)
|
49 |
|
50 |
train_dataset = dataset_meta.train_dataset
|
@@ -52,7 +56,10 @@ def train(
|
|
52 |
total_num_steps = dataset_meta.total_num_steps
|
53 |
|
54 |
# Load the model and tokenizer
|
55 |
-
|
|
|
|
|
|
|
56 |
model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference)
|
57 |
|
58 |
safe_serialization = cfg.save_safetensors is True
|
|
|
18 |
from axolotl.logging_config import configure_logging
|
19 |
from axolotl.monkeypatch import neft_embeddings
|
20 |
from axolotl.utils.dict import DictDefault
|
21 |
+
from axolotl.utils.distributed import zero_only
|
22 |
from axolotl.utils.models import load_model, load_tokenizer
|
23 |
from axolotl.utils.trainer import setup_trainer
|
24 |
|
|
|
45 |
*, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta
|
46 |
):
|
47 |
# load the tokenizer first
|
48 |
+
with zero_only():
|
49 |
+
LOG.debug(
|
50 |
+
f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}"
|
51 |
+
)
|
52 |
tokenizer = load_tokenizer(cfg)
|
53 |
|
54 |
train_dataset = dataset_meta.train_dataset
|
|
|
56 |
total_num_steps = dataset_meta.total_num_steps
|
57 |
|
58 |
# Load the model and tokenizer
|
59 |
+
msg = "loading model"
|
60 |
+
if cfg.adapter:
|
61 |
+
msg += " and peft_config..."
|
62 |
+
LOG.debug(msg)
|
63 |
model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference)
|
64 |
|
65 |
safe_serialization = cfg.save_safetensors is True
|
src/axolotl/utils/distributed.py
CHANGED
@@ -50,6 +50,17 @@ def get_world_size():
|
|
50 |
return int(os.getenv("WORLD_SIZE", "1"))
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
@contextmanager
|
54 |
def zero_first(is_main):
|
55 |
"""
|
|
|
50 |
return int(os.getenv("WORLD_SIZE", "1"))
|
51 |
|
52 |
|
53 |
+
@contextmanager
|
54 |
+
def zero_only():
|
55 |
+
"""
|
56 |
+
Context manager that only runs the enclosed block on the main rank.
|
57 |
+
"""
|
58 |
+
if is_main_process():
|
59 |
+
yield
|
60 |
+
else:
|
61 |
+
yield None
|
62 |
+
|
63 |
+
|
64 |
@contextmanager
|
65 |
def zero_first(is_main):
|
66 |
"""
|
src/axolotl/utils/trainer.py
CHANGED
@@ -21,6 +21,7 @@ from axolotl.utils.distributed import (
|
|
21 |
is_main_process,
|
22 |
reduce_and_broadcast,
|
23 |
zero_first,
|
|
|
24 |
)
|
25 |
|
26 |
LOG = logging.getLogger("axolotl")
|
@@ -153,14 +154,14 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
153 |
# we have to drop anything longer then sequence len otherwise
|
154 |
# flash attention with position ids fails
|
155 |
if not cfg.total_num_tokens:
|
156 |
-
LOG.info("calculating total_num_tokens")
|
157 |
total_num_tokens = np.sum(
|
158 |
train_dataset.data.column("input_ids")
|
159 |
.to_pandas()
|
160 |
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
|
161 |
.values
|
162 |
)
|
163 |
-
|
|
|
164 |
cfg.total_num_tokens = total_num_tokens
|
165 |
|
166 |
if not cfg.total_supervised_tokens:
|
@@ -170,7 +171,8 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
170 |
.apply(lambda x: np.sum(np.array(x) != -100))
|
171 |
.sum()
|
172 |
)
|
173 |
-
|
|
|
174 |
cfg.total_supervised_tokens = total_supervised_tokens
|
175 |
|
176 |
if cfg.sample_packing_eff_est:
|
@@ -189,9 +191,10 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
189 |
)
|
190 |
* cfg.num_epochs
|
191 |
)
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
195 |
else:
|
196 |
if cfg.world_size > 1 and is_distributed():
|
197 |
sampler = DistributedSampler(
|
@@ -220,7 +223,8 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
220 |
)
|
221 |
data_loader_len = data_loader.len_w_stats()
|
222 |
actual_eff = data_loader.efficiency()
|
223 |
-
|
|
|
224 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
225 |
# on the agreed on value for sample_packing_eff_est
|
226 |
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
|
@@ -237,12 +241,14 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
237 |
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
|
238 |
)
|
239 |
cfg.sample_packing_eff_est = sample_packing_eff_est
|
240 |
-
|
|
|
241 |
else:
|
242 |
total_num_steps = int(
|
243 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
244 |
)
|
245 |
-
|
|
|
246 |
return total_num_steps
|
247 |
|
248 |
|
|
|
21 |
is_main_process,
|
22 |
reduce_and_broadcast,
|
23 |
zero_first,
|
24 |
+
zero_only,
|
25 |
)
|
26 |
|
27 |
LOG = logging.getLogger("axolotl")
|
|
|
154 |
# we have to drop anything longer then sequence len otherwise
|
155 |
# flash attention with position ids fails
|
156 |
if not cfg.total_num_tokens:
|
|
|
157 |
total_num_tokens = np.sum(
|
158 |
train_dataset.data.column("input_ids")
|
159 |
.to_pandas()
|
160 |
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
|
161 |
.values
|
162 |
)
|
163 |
+
with zero_only():
|
164 |
+
LOG.debug(f"total_num_tokens: {total_num_tokens}")
|
165 |
cfg.total_num_tokens = total_num_tokens
|
166 |
|
167 |
if not cfg.total_supervised_tokens:
|
|
|
171 |
.apply(lambda x: np.sum(np.array(x) != -100))
|
172 |
.sum()
|
173 |
)
|
174 |
+
with zero_only():
|
175 |
+
LOG.debug(f"`total_supervised_tokens: {total_supervised_tokens}`")
|
176 |
cfg.total_supervised_tokens = total_supervised_tokens
|
177 |
|
178 |
if cfg.sample_packing_eff_est:
|
|
|
191 |
)
|
192 |
* cfg.num_epochs
|
193 |
)
|
194 |
+
with zero_only():
|
195 |
+
LOG.debug(
|
196 |
+
f"total_num_tokens: {cfg.total_num_tokens}, total_num_steps: {total_num_steps}"
|
197 |
+
)
|
198 |
else:
|
199 |
if cfg.world_size > 1 and is_distributed():
|
200 |
sampler = DistributedSampler(
|
|
|
223 |
)
|
224 |
data_loader_len = data_loader.len_w_stats()
|
225 |
actual_eff = data_loader.efficiency()
|
226 |
+
with zero_only():
|
227 |
+
LOG.debug(f"data_loader_len: {data_loader_len}")
|
228 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
229 |
# on the agreed on value for sample_packing_eff_est
|
230 |
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
|
|
|
241 |
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
|
242 |
)
|
243 |
cfg.sample_packing_eff_est = sample_packing_eff_est
|
244 |
+
with zero_only():
|
245 |
+
LOG.debug(f"sample_packing_eff_est: {cfg.sample_packing_eff_est}")
|
246 |
else:
|
247 |
total_num_steps = int(
|
248 |
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
|
249 |
)
|
250 |
+
with zero_only():
|
251 |
+
LOG.debug(f"total_num_steps: {total_num_steps}")
|
252 |
return total_num_steps
|
253 |
|
254 |
|