Maciek
commited on
Fix Google Colab notebook 2024-05 (#1662) [skip ci]
Browse files* include mlflow installation in the colab notebook
Without explicitly installing mlflow the `accelerate launch` command fails.
* update the colab noteboko to use the latest tinyllama config
examples/colab-notebooks/colab-axolotl-example.ipynb
CHANGED
@@ -1,216 +1,223 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"colab": {
|
39 |
-
"base_uri": "https://localhost:8080/"
|
40 |
-
},
|
41 |
-
"id": "3c3yGAwnOIdi",
|
42 |
-
"outputId": "e3777b5a-40ef-424f-e181-62dfecd1dd01"
|
43 |
-
},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"!pip install torch==\"2.1.2\"\n",
|
47 |
-
"!pip install -e git+https://github.com/OpenAccess-AI-Collective/axolotl#egg=axolotl\n",
|
48 |
-
"!pip install flash-attn==\"2.5.0\"\n",
|
49 |
-
"!pip install deepspeed==\"0.13.1\""
|
50 |
-
]
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"cell_type": "markdown",
|
54 |
-
"metadata": {
|
55 |
-
"id": "BW2MFr7HTjub"
|
56 |
-
},
|
57 |
-
"source": [
|
58 |
-
"## Create an yaml config file"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": null,
|
64 |
-
"metadata": {
|
65 |
-
"id": "9pkF2dSoQEUN"
|
66 |
-
},
|
67 |
-
"outputs": [],
|
68 |
-
"source": [
|
69 |
-
"import yaml\n",
|
70 |
-
"\n",
|
71 |
-
"# Your YAML string\n",
|
72 |
-
"yaml_string = \"\"\"\n",
|
73 |
-
"base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\n",
|
74 |
-
"model_type: LlamaForCausalLM\n",
|
75 |
-
"tokenizer_type: LlamaTokenizer\n",
|
76 |
-
"is_llama_derived_model: true\n",
|
77 |
-
"\n",
|
78 |
-
"load_in_8bit: false\n",
|
79 |
-
"load_in_4bit: true\n",
|
80 |
-
"strict: false\n",
|
81 |
-
"\n",
|
82 |
-
"datasets:\n",
|
83 |
-
" - path: mhenrichsen/alpaca_2k_test\n",
|
84 |
-
" type: alpaca\n",
|
85 |
-
"dataset_prepared_path:\n",
|
86 |
-
"val_set_size: 0.05\n",
|
87 |
-
"output_dir: ./outputs/qlora-out\n",
|
88 |
-
"\n",
|
89 |
-
"adapter: qlora\n",
|
90 |
-
"lora_model_dir:\n",
|
91 |
-
"\n",
|
92 |
-
"sequence_len: 1096\n",
|
93 |
-
"sample_packing: true\n",
|
94 |
-
"pad_to_sequence_len: true\n",
|
95 |
-
"\n",
|
96 |
-
"lora_r: 32\n",
|
97 |
-
"lora_alpha: 16\n",
|
98 |
-
"lora_dropout: 0.05\n",
|
99 |
-
"lora_target_modules:\n",
|
100 |
-
"lora_target_linear: true\n",
|
101 |
-
"lora_fan_in_fan_out:\n",
|
102 |
-
"\n",
|
103 |
-
"wandb_project:\n",
|
104 |
-
"wandb_entity:\n",
|
105 |
-
"wandb_watch:\n",
|
106 |
-
"wandb_name:\n",
|
107 |
-
"wandb_log_model:\n",
|
108 |
-
"\n",
|
109 |
-
"mlflow_experiment_name: colab-example\n",
|
110 |
-
"\n",
|
111 |
-
"gradient_accumulation_steps: 1\n",
|
112 |
-
"micro_batch_size: 1\n",
|
113 |
-
"num_epochs: 4\n",
|
114 |
-
"max_steps: 20\n",
|
115 |
-
"optimizer: paged_adamw_32bit\n",
|
116 |
-
"lr_scheduler: cosine\n",
|
117 |
-
"learning_rate: 0.0002\n",
|
118 |
-
"\n",
|
119 |
-
"train_on_inputs: false\n",
|
120 |
-
"group_by_length: false\n",
|
121 |
-
"bf16: false\n",
|
122 |
-
"fp16: true\n",
|
123 |
-
"tf32: false\n",
|
124 |
-
"\n",
|
125 |
-
"gradient_checkpointing: true\n",
|
126 |
-
"early_stopping_patience:\n",
|
127 |
-
"resume_from_checkpoint:\n",
|
128 |
-
"local_rank:\n",
|
129 |
-
"logging_steps: 1\n",
|
130 |
-
"xformers_attention:\n",
|
131 |
-
"flash_attention: false\n",
|
132 |
-
"\n",
|
133 |
-
"warmup_steps: 10\n",
|
134 |
-
"evals_per_epoch:\n",
|
135 |
-
"saves_per_epoch:\n",
|
136 |
-
"debug:\n",
|
137 |
-
"deepspeed:\n",
|
138 |
-
"weight_decay: 0.0\n",
|
139 |
-
"fsdp:\n",
|
140 |
-
"fsdp_config:\n",
|
141 |
-
"special_tokens:\n",
|
142 |
-
"\n",
|
143 |
-
"\"\"\"\n",
|
144 |
-
"\n",
|
145 |
-
"# Convert the YAML string to a Python dictionary\n",
|
146 |
-
"yaml_dict = yaml.safe_load(yaml_string)\n",
|
147 |
-
"\n",
|
148 |
-
"# Specify your file path\n",
|
149 |
-
"file_path = 'test_axolotl.yaml'\n",
|
150 |
-
"\n",
|
151 |
-
"# Write the YAML file\n",
|
152 |
-
"with open(file_path, 'w') as file:\n",
|
153 |
-
" yaml.dump(yaml_dict, file)\n"
|
154 |
-
]
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"cell_type": "markdown",
|
158 |
-
"metadata": {
|
159 |
-
"id": "bidoj8YLTusD"
|
160 |
-
},
|
161 |
-
"source": [
|
162 |
-
"## Launch the training"
|
163 |
-
]
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"cell_type": "code",
|
167 |
-
"execution_count": null,
|
168 |
-
"metadata": {
|
169 |
-
"colab": {
|
170 |
-
"base_uri": "https://localhost:8080/"
|
171 |
-
},
|
172 |
-
"id": "ydTI2Jk2RStU",
|
173 |
-
"outputId": "d6d0df17-4b53-439c-c802-22c0456d301b"
|
174 |
-
},
|
175 |
-
"outputs": [],
|
176 |
-
"source": [
|
177 |
-
"# Buy using the ! the comand will be executed as a bash command\n",
|
178 |
-
"!accelerate launch -m axolotl.cli.train /content/test_axolotl.yaml"
|
179 |
-
]
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"cell_type": "markdown",
|
183 |
-
"metadata": {},
|
184 |
-
"source": [
|
185 |
-
"## Play with inference"
|
186 |
-
]
|
187 |
-
},
|
188 |
-
{
|
189 |
-
"cell_type": "code",
|
190 |
-
"execution_count": null,
|
191 |
-
"metadata": {},
|
192 |
-
"outputs": [],
|
193 |
-
"source": [
|
194 |
-
"# Buy using the ! the comand will be executed as a bash command\n",
|
195 |
-
"!accelerate launch -m axolotl.cli.inference /content/test_axolotl.yaml \\\n",
|
196 |
-
" --qlora_model_dir=\"./qlora-out\" --gradio"
|
197 |
-
]
|
198 |
-
}
|
199 |
-
],
|
200 |
-
"metadata": {
|
201 |
-
"accelerator": "GPU",
|
202 |
"colab": {
|
203 |
-
|
204 |
-
"provenance": []
|
205 |
},
|
206 |
-
"
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
},
|
210 |
-
"
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
},
|
214 |
-
"
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
}
|
|
|
1 |
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "AKjdG7tbTb-n"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Example notebook for running Axolotl on google colab"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "RcbNpOgWRcii"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import torch\n",
|
21 |
+
"# Check so there is a gpu available, a T4(free tier) is enough to run this notebook\n",
|
22 |
+
"assert (torch.cuda.is_available()==True)"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "markdown",
|
27 |
+
"metadata": {
|
28 |
+
"id": "h3nLav8oTRA5"
|
29 |
+
},
|
30 |
+
"source": [
|
31 |
+
"## Install Axolotl and dependencies"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"colab": {
|
39 |
+
"base_uri": "https://localhost:8080/"
|
|
|
40 |
},
|
41 |
+
"id": "3c3yGAwnOIdi",
|
42 |
+
"outputId": "e3777b5a-40ef-424f-e181-62dfecd1dd01"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"!pip install torch==\"2.1.2\"\n",
|
47 |
+
"!pip install -e git+https://github.com/OpenAccess-AI-Collective/axolotl#egg=axolotl\n",
|
48 |
+
"!pip install flash-attn==\"2.5.0\"\n",
|
49 |
+
"!pip install deepspeed==\"0.13.1\"!pip install mlflow==\"2.13.0\""
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"metadata": {
|
55 |
+
"id": "BW2MFr7HTjub"
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"## Create an yaml config file"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"metadata": {
|
65 |
+
"id": "9pkF2dSoQEUN"
|
66 |
+
},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"import yaml\n",
|
70 |
+
"\n",
|
71 |
+
"# Your YAML string\n",
|
72 |
+
"yaml_string = \"\"\"\n",
|
73 |
+
"base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T\n",
|
74 |
+
"model_type: LlamaForCausalLM\n",
|
75 |
+
"tokenizer_type: LlamaTokenizer\n",
|
76 |
+
"\n",
|
77 |
+
"load_in_8bit: false\n",
|
78 |
+
"load_in_4bit: true\n",
|
79 |
+
"strict: false\n",
|
80 |
+
"\n",
|
81 |
+
"datasets:\n",
|
82 |
+
" - path: mhenrichsen/alpaca_2k_test\n",
|
83 |
+
" type: alpaca\n",
|
84 |
+
"dataset_prepared_path:\n",
|
85 |
+
"val_set_size: 0.05\n",
|
86 |
+
"output_dir: ./outputs/qlora-out\n",
|
87 |
+
"\n",
|
88 |
+
"adapter: qlora\n",
|
89 |
+
"lora_model_dir:\n",
|
90 |
+
"\n",
|
91 |
+
"sequence_len: 4096\n",
|
92 |
+
"sample_packing: true\n",
|
93 |
+
"eval_sample_packing: false\n",
|
94 |
+
"pad_to_sequence_len: true\n",
|
95 |
+
"\n",
|
96 |
+
"lora_r: 32\n",
|
97 |
+
"lora_alpha: 16\n",
|
98 |
+
"lora_dropout: 0.05\n",
|
99 |
+
"lora_target_modules:\n",
|
100 |
+
"lora_target_linear: true\n",
|
101 |
+
"lora_fan_in_fan_out:\n",
|
102 |
+
"\n",
|
103 |
+
"wandb_project:\n",
|
104 |
+
"wandb_entity:\n",
|
105 |
+
"wandb_watch:\n",
|
106 |
+
"wandb_name:\n",
|
107 |
+
"wandb_log_model:\n",
|
108 |
+
"\n",
|
109 |
+
"gradient_accumulation_steps: 4\n",
|
110 |
+
"micro_batch_size: 2\n",
|
111 |
+
"num_epochs: 4\n",
|
112 |
+
"optimizer: paged_adamw_32bit\n",
|
113 |
+
"lr_scheduler: cosine\n",
|
114 |
+
"learning_rate: 0.0002\n",
|
115 |
+
"\n",
|
116 |
+
"train_on_inputs: false\n",
|
117 |
+
"group_by_length: false\n",
|
118 |
+
"bf16: auto\n",
|
119 |
+
"fp16:\n",
|
120 |
+
"tf32: false\n",
|
121 |
+
"\n",
|
122 |
+
"gradient_checkpointing: true\n",
|
123 |
+
"early_stopping_patience:\n",
|
124 |
+
"resume_from_checkpoint:\n",
|
125 |
+
"local_rank:\n",
|
126 |
+
"logging_steps: 1\n",
|
127 |
+
"xformers_attention:\n",
|
128 |
+
"flash_attention: true\n",
|
129 |
+
"\n",
|
130 |
+
"warmup_steps: 10\n",
|
131 |
+
"evals_per_epoch: 4\n",
|
132 |
+
"saves_per_epoch: 1\n",
|
133 |
+
"debug:\n",
|
134 |
+
"deepspeed:\n",
|
135 |
+
"weight_decay: 0.0\n",
|
136 |
+
"fsdp:\n",
|
137 |
+
"fsdp_config:\n",
|
138 |
+
"special_tokens:\n",
|
139 |
+
"\n",
|
140 |
+
"\"\"\"\n",
|
141 |
+
"\n",
|
142 |
+
"# Convert the YAML string to a Python dictionary\n",
|
143 |
+
"yaml_dict = yaml.safe_load(yaml_string)\n",
|
144 |
+
"\n",
|
145 |
+
"# Specify your file path\n",
|
146 |
+
"file_path = 'test_axolotl.yaml'\n",
|
147 |
+
"\n",
|
148 |
+
"# Write the YAML file\n",
|
149 |
+
"with open(file_path, 'w') as file:\n",
|
150 |
+
" yaml.dump(yaml_dict, file)\n"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"metadata": {
|
156 |
+
"id": "bidoj8YLTusD"
|
157 |
+
},
|
158 |
+
"source": [
|
159 |
+
"## Launch the training"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": null,
|
165 |
+
"metadata": {
|
166 |
+
"colab": {
|
167 |
+
"base_uri": "https://localhost:8080/"
|
168 |
},
|
169 |
+
"id": "ydTI2Jk2RStU",
|
170 |
+
"outputId": "d6d0df17-4b53-439c-c802-22c0456d301b"
|
171 |
+
},
|
172 |
+
"outputs": [],
|
173 |
+
"source": [
|
174 |
+
"# Buy using the ! the comand will be executed as a bash command\n",
|
175 |
+
"!accelerate launch -m axolotl.cli.train /content/test_axolotl.yaml"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"metadata": {},
|
181 |
+
"source": [
|
182 |
+
"## Play with inference"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [],
|
190 |
+
"source": [
|
191 |
+
"# Buy using the ! the comand will be executed as a bash command\n",
|
192 |
+
"!accelerate launch -m axolotl.cli.inference /content/test_axolotl.yaml \\\n",
|
193 |
+
" --qlora_model_dir=\"./qlora-out\" --gradio"
|
194 |
+
]
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"metadata": {
|
198 |
+
"accelerator": "GPU",
|
199 |
+
"colab": {
|
200 |
+
"gpuType": "T4",
|
201 |
+
"provenance": []
|
202 |
+
},
|
203 |
+
"kernelspec": {
|
204 |
+
"display_name": "Python 3 (ipykernel)",
|
205 |
+
"language": "python",
|
206 |
+
"name": "python3"
|
207 |
},
|
208 |
+
"language_info": {
|
209 |
+
"codemirror_mode": {
|
210 |
+
"name": "ipython",
|
211 |
+
"version": 3
|
212 |
+
},
|
213 |
+
"file_extension": ".py",
|
214 |
+
"mimetype": "text/x-python",
|
215 |
+
"name": "python",
|
216 |
+
"nbconvert_exporter": "python",
|
217 |
+
"pygments_lexer": "ipython3",
|
218 |
+
"version": "3.12.1"
|
219 |
+
}
|
220 |
+
},
|
221 |
+
"nbformat": 4,
|
222 |
+
"nbformat_minor": 4
|
223 |
}
|