""" E2E tests for lora llama """ import logging import os import tempfile import unittest from axolotl.common.cli import TrainerCliArgs from axolotl.train import TrainDatasetMeta, train from axolotl.utils.config import normalize_config from axolotl.utils.data import prepare_dataset from axolotl.utils.dict import DictDefault from axolotl.utils.models import load_tokenizer LOG = logging.getLogger("axolotl.tests.e2e") os.environ["WANDB_DISABLED"] = "true" def load_datasets( *, cfg: DictDefault, cli_args: TrainerCliArgs, # pylint:disable=unused-argument ) -> TrainDatasetMeta: tokenizer = load_tokenizer(cfg) train_dataset, eval_dataset, total_num_steps = prepare_dataset(cfg, tokenizer) return TrainDatasetMeta( train_dataset=train_dataset, eval_dataset=eval_dataset, total_num_steps=total_num_steps, ) class TestLoraLlama(unittest.TestCase): """ Test case for Llama models using LoRA """ def test_lora(self): cfg = DictDefault( { "base_model": "JackFram/llama-68m", "base_model_config": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "load_in_8bit": True, "adapter": "lora", "lora_r": 32, "lora_alpha": 64, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.1, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 8, "gradient_accumulation_steps": 1, "output_dir": tempfile.mkdtemp(), "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) def test_lora_packing(self): cfg = DictDefault( { "base_model": "JackFram/llama-68m", "base_model_config": "JackFram/llama-68m", "tokenizer_type": "LlamaTokenizer", "sequence_len": 1024, "sample_packing": True, "flash_attention": True, "load_in_8bit": True, "adapter": "lora", "lora_r": 32, "lora_alpha": 64, "lora_dropout": 0.05, "lora_target_linear": True, "val_set_size": 0.1, "special_tokens": { "unk_token": "", "bos_token": "", "eos_token": "", }, "datasets": [ { "path": "mhenrichsen/alpaca_2k_test", "type": "alpaca", }, ], "num_epochs": 2, "micro_batch_size": 8, "gradient_accumulation_steps": 1, "output_dir": tempfile.mkdtemp(), "learning_rate": 0.00001, "optimizer": "adamw_torch", "lr_scheduler": "cosine", } ) normalize_config(cfg) cli_args = TrainerCliArgs() dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)