Spaces:
Sleeping
Sleeping
Upload app3.py
Browse files
app3.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from scipy.integrate import odeint
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import time
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Define the Lorenz system
|
9 |
+
def lorenz_system(current_state, t, sigma, rho, beta):
|
10 |
+
x, y, z = current_state
|
11 |
+
dx_dt = sigma * (y - x)
|
12 |
+
dy_dt = x * (rho - z) - y
|
13 |
+
dz_dt = x * y - beta * z
|
14 |
+
return [dx_dt, dy_dt, dz_dt]
|
15 |
+
|
16 |
+
# Set up the sidebar
|
17 |
+
st.sidebar.title('Lorenz System Parameters')
|
18 |
+
sigma = st.sidebar.slider('Sigma', 0.0, 50.0, 10.0)
|
19 |
+
rho = st.sidebar.slider('Rho', 0.0, 50.0, 28.0)
|
20 |
+
beta = st.sidebar.slider('Beta', 0.0, 50.0, 2.67)
|
21 |
+
|
22 |
+
x0_1 = st.sidebar.number_input('Initial x for 1st system', value=1.0)
|
23 |
+
y0_1 = st.sidebar.number_input('Initial y for 1st system', value=1.0)
|
24 |
+
z0_1 = st.sidebar.number_input('Initial z for 1st system', value=1.0)
|
25 |
+
|
26 |
+
x0_2 = st.sidebar.number_input('Initial x for 2nd system', value=1.0)
|
27 |
+
y0_2 = st.sidebar.number_input('Initial y for 2nd system', value=1.0)
|
28 |
+
z0_2 = st.sidebar.number_input('Initial z for 2nd system', value=1.0)
|
29 |
+
|
30 |
+
# Define the time points for the simulation
|
31 |
+
t = np.linspace(0, 4, 1000)
|
32 |
+
|
33 |
+
# Solve the Lorenz system
|
34 |
+
solution_1 = odeint(lorenz_system, (x0_1, y0_1, z0_1), t, args=(sigma, rho, beta))
|
35 |
+
solution_2 = odeint(lorenz_system, (x0_2, y0_2, z0_2), t, args=(sigma, rho, beta))
|
36 |
+
|
37 |
+
# Create a 3D plot of the solutions
|
38 |
+
plot_slot = st.empty()
|
39 |
+
|
40 |
+
stop = st.checkbox('Stop')
|
41 |
+
|
42 |
+
i = 0
|
43 |
+
while i < len(t) and not stop:
|
44 |
+
fig = go.Figure(data=[
|
45 |
+
go.Scatter3d(x=solution_1[:i, 0], y=solution_1[:i, 1], z=solution_1[:i, 2], mode='lines', line=dict(color='red'), name='System 1'),
|
46 |
+
go.Scatter3d(x=solution_2[:i, 0], y=solution_2[:i, 1], z=solution_2[:i, 2], mode='lines', line=dict(color='blue'), name='System 2')
|
47 |
+
])
|
48 |
+
|
49 |
+
fig.update_layout(scene=dict(xaxis=dict(range=[min(min(solution_1[:, 0]), min(solution_2[:, 0])), max(max(solution_1[:, 0]), max(solution_2[:, 0]))]),
|
50 |
+
yaxis=dict(range=[min(min(solution_1[:, 1]), min(solution_2[:, 1])), max(max(solution_1[:, 1]), max(solution_2[:, 1]))]),
|
51 |
+
zaxis=dict(range=[min(min(solution_1[:, 2]), min(solution_2[:, 2])), max(max(solution_1[:, 2]), max(solution_2[:, 2]))]),
|
52 |
+
camera=dict(eye=dict(x=2*np.cos(i/10), y=2*np.sin(i/10), z=0.1))),
|
53 |
+
width=800, height=600)
|
54 |
+
|
55 |
+
plot_slot.plotly_chart(fig)
|
56 |
+
|
57 |
+
i += 1
|
58 |
+
time.sleep(0.2)
|
59 |
+
|
60 |
+
if st.button('Export Data'):
|
61 |
+
df_1 = pd.DataFrame(solution_1, columns=['x_1', 'y_1', 'z_1'])
|
62 |
+
df_2 = pd.DataFrame(solution_2, columns=['x_2', 'y_2', 'z_2'])
|
63 |
+
df_1.to_csv('lorenz_data_1.csv')
|
64 |
+
df_2.to_csv('lorenz_data_2.csv')
|
65 |
+
st.write('Data exported successfully!')
|