File size: 8,687 Bytes
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
bb0f5a9
 
a0bcaae
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) SenseTime Research. All rights reserved.

# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html

"""Custom TensorFlow ops for efficient bias and activation."""

import os
import numpy as np
import tensorflow as tf
from .. import custom_ops
from ...util import EasyDict


def _get_plugin():
    return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')

# ----------------------------------------------------------------------------


activation_funcs = {
    'linear':   EasyDict(func=lambda x, **_:        x,                          def_alpha=None, def_gain=1.0,           cuda_idx=1, ref='y', zero_2nd_grad=True),
    'relu':     EasyDict(func=lambda x, **_:        tf.nn.relu(x),              def_alpha=None, def_gain=np.sqrt(2),    cuda_idx=2, ref='y', zero_2nd_grad=True),
    'lrelu':    EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2,  def_gain=np.sqrt(2),    cuda_idx=3, ref='y', zero_2nd_grad=True),
    'tanh':     EasyDict(func=lambda x, **_:        tf.nn.tanh(x),              def_alpha=None, def_gain=1.0,           cuda_idx=4, ref='y', zero_2nd_grad=False),
    'sigmoid':  EasyDict(func=lambda x, **_:        tf.nn.sigmoid(x),           def_alpha=None, def_gain=1.0,           cuda_idx=5, ref='y', zero_2nd_grad=False),
    'elu':      EasyDict(func=lambda x, **_:        tf.nn.elu(x),               def_alpha=None, def_gain=1.0,           cuda_idx=6, ref='y', zero_2nd_grad=False),
    'selu':     EasyDict(func=lambda x, **_:        tf.nn.selu(x),              def_alpha=None, def_gain=1.0,           cuda_idx=7, ref='y', zero_2nd_grad=False),
    'softplus': EasyDict(func=lambda x, **_:        tf.nn.softplus(x),          def_alpha=None, def_gain=1.0,           cuda_idx=8, ref='y', zero_2nd_grad=False),
    'swish':    EasyDict(func=lambda x, **_:        tf.nn.sigmoid(x) * x,       def_alpha=None, def_gain=np.sqrt(2),    cuda_idx=9, ref='x', zero_2nd_grad=False),
}

# ----------------------------------------------------------------------------


def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, impl='cuda'):
    r"""Fused bias and activation function.

    Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
    and scales the result by `gain`. Each of the steps is optional. In most cases,
    the fused op is considerably more efficient than performing the same calculation
    using standard TensorFlow ops. It supports first and second order gradients,
    but not third order gradients.

    Args:
        x:      Input activation tensor. Can have any shape, but if `b` is defined, the
                dimension corresponding to `axis`, as well as the rank, must be known.
        b:      Bias vector, or `None` to disable. Must be a 1D tensor of the same type
                as `x`. The shape must be known, and it must match the dimension of `x`
                corresponding to `axis`.
        axis:   The dimension in `x` corresponding to the elements of `b`.
                The value of `axis` is ignored if `b` is not specified.
        act:    Name of the activation function to evaluate, or `"linear"` to disable.
                Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
                See `activation_funcs` for a full list. `None` is not allowed.
        alpha:  Shape parameter for the activation function, or `None` to use the default.
        gain:   Scaling factor for the output tensor, or `None` to use default.
                See `activation_funcs` for the default scaling of each activation function.
                If unsure, consider specifying `1.0`.
        impl:   Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).

    Returns:
        Tensor of the same shape and datatype as `x`.
    """

    impl_dict = {
        'ref':  _fused_bias_act_ref,
        'cuda': _fused_bias_act_cuda,
    }
    return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)

# ----------------------------------------------------------------------------


def _fused_bias_act_ref(x, b, axis, act, alpha, gain):
    """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops."""

    # Validate arguments.
    x = tf.convert_to_tensor(x)
    b = tf.convert_to_tensor(
        b) if b is not None else tf.constant([], dtype=x.dtype)
    act_spec = activation_funcs[act]
    assert b.shape.rank == 1 and (
        b.shape[0] == 0 or b.shape[0] == x.shape[axis])
    assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
    if alpha is None:
        alpha = act_spec.def_alpha
    if gain is None:
        gain = act_spec.def_gain

    # Add bias.
    if b.shape[0] != 0:
        x += tf.reshape(b, [-1 if i ==
                        axis else 1 for i in range(x.shape.rank)])

    # Evaluate activation function.
    x = act_spec.func(x, alpha=alpha)

    # Scale by gain.
    if gain != 1:
        x *= gain
    return x

# ----------------------------------------------------------------------------


def _fused_bias_act_cuda(x, b, axis, act, alpha, gain):
    """Fast CUDA implementation of `fused_bias_act()` using custom ops."""

    # Validate arguments.
    x = tf.convert_to_tensor(x)
    empty_tensor = tf.constant([], dtype=x.dtype)
    b = tf.convert_to_tensor(b) if b is not None else empty_tensor
    act_spec = activation_funcs[act]
    assert b.shape.rank == 1 and (
        b.shape[0] == 0 or b.shape[0] == x.shape[axis])
    assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
    if alpha is None:
        alpha = act_spec.def_alpha
    if gain is None:
        gain = act_spec.def_gain

    # Special cases.
    if act == 'linear' and b is None and gain == 1.0:
        return x
    if act_spec.cuda_idx is None:
        return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)

    # CUDA kernel.
    cuda_kernel = _get_plugin().fused_bias_act
    cuda_kwargs = dict(axis=axis, act=act_spec.cuda_idx,
                       alpha=alpha, gain=gain)

    # Forward pass: y = func(x, b).
    def func_y(x, b):
        y = cuda_kernel(x=x, b=b, ref=empty_tensor, grad=0, **cuda_kwargs)
        y.set_shape(x.shape)
        return y

    # Backward pass: dx, db = grad(dy, x, y)
    def grad_dx(dy, x, y):
        ref = {'x': x, 'y': y}[act_spec.ref]
        dx = cuda_kernel(x=dy, b=empty_tensor, ref=ref, grad=1, **cuda_kwargs)
        dx.set_shape(x.shape)
        return dx

    def grad_db(dx):
        if b.shape[0] == 0:
            return empty_tensor
        db = dx
        if axis < x.shape.rank - 1:
            db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank)))
        if axis > 0:
            db = tf.reduce_sum(db, list(range(axis)))
        db.set_shape(b.shape)
        return db

    # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y)
    def grad2_d_dy(d_dx, d_db, x, y):
        ref = {'x': x, 'y': y}[act_spec.ref]
        d_dy = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=1, **cuda_kwargs)
        d_dy.set_shape(x.shape)
        return d_dy

    def grad2_d_x(d_dx, d_db, x, y):
        ref = {'x': x, 'y': y}[act_spec.ref]
        d_x = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=2, **cuda_kwargs)
        d_x.set_shape(x.shape)
        return d_x

    # Fast version for piecewise-linear activation funcs.
    @tf.custom_gradient
    def func_zero_2nd_grad(x, b):
        y = func_y(x, b)

        @tf.custom_gradient
        def grad(dy):
            dx = grad_dx(dy, x, y)
            db = grad_db(dx)

            def grad2(d_dx, d_db):
                d_dy = grad2_d_dy(d_dx, d_db, x, y)
                return d_dy
            return (dx, db), grad2
        return y, grad

    # Slow version for general activation funcs.
    @tf.custom_gradient
    def func_nonzero_2nd_grad(x, b):
        y = func_y(x, b)

        def grad_wrap(dy):
            @tf.custom_gradient
            def grad_impl(dy, x):
                dx = grad_dx(dy, x, y)
                db = grad_db(dx)

                def grad2(d_dx, d_db):
                    d_dy = grad2_d_dy(d_dx, d_db, x, y)
                    d_x = grad2_d_x(d_dx, d_db, x, y)
                    return d_dy, d_x
                return (dx, db), grad2
            return grad_impl(dy, x)
        return y, grad_wrap

    # Which version to use?
    if act_spec.zero_2nd_grad:
        return func_zero_2nd_grad(x, b)
    return func_nonzero_2nd_grad(x, b)

# ----------------------------------------------------------------------------