File size: 15,201 Bytes
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (c) SenseTime Research. All rights reserved.

// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html

#define EIGEN_USE_GPU
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include <stdio.h>

using namespace tensorflow;
using namespace tensorflow::shape_inference;

//------------------------------------------------------------------------
// Helpers.

#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)

static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
{
    int c = a / b;
    if (c * b > a)
        c--;
    return c;
}

//------------------------------------------------------------------------
// CUDA kernel params.

template <class T>
struct UpFirDn2DKernelParams
{
    const T*    x;          // [majorDim, inH, inW, minorDim]
    const T*    k;          // [kernelH, kernelW]
    T*          y;          // [majorDim, outH, outW, minorDim]

    int         upx;
    int         upy;
    int         downx;
    int         downy;
    int         padx0;
    int         padx1;
    int         pady0;
    int         pady1;

    int         majorDim;
    int         inH;
    int         inW;
    int         minorDim;
    int         kernelH;
    int         kernelW;
    int         outH;
    int         outW;
    int         loopMajor;
    int         loopX;
};

//------------------------------------------------------------------------
// General CUDA implementation for large filter kernels.

template <class T>
static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
{
    // Calculate thread index.
    int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
    int outY = minorIdx / p.minorDim;
    minorIdx -= outY * p.minorDim;
    int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
    int majorIdxBase = blockIdx.z * p.loopMajor;
    if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
        return;

    // Setup Y receptive field.
    int midY = outY * p.downy + p.upy - 1 - p.pady0;
    int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
    int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
    int kernelY = midY + p.kernelH - (inY + 1) * p.upy;

    // Loop over majorDim and outX.
    for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
    for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
    {
        // Setup X receptive field.
        int midX = outX * p.downx + p.upx - 1 - p.padx0;
        int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
        int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
        int kernelX = midX + p.kernelW - (inX + 1) * p.upx;

        // Initialize pointers.
        const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
        const T* kp = &p.k[kernelY * p.kernelW + kernelX];
        int xpx = p.minorDim;
        int kpx = -p.upx;
        int xpy = p.inW * p.minorDim;
        int kpy = -p.upy * p.kernelW;

        // Inner loop.
        float v = 0.0f;
        for (int y = 0; y < h; y++)
        {
            for (int x = 0; x < w; x++)
            {
                v += (float)(*xp) * (float)(*kp);
                xp += xpx;
                kp += kpx;
            }
            xp += xpy - w * xpx;
            kp += kpy - w * kpx;
        }

        // Store result.
        p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
    }
}

//------------------------------------------------------------------------
// Specialized CUDA implementation for small filter kernels.

template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
{
    //assert(kernelW % upx == 0);
    //assert(kernelH % upy == 0);
    const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
    const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
    __shared__ volatile float sk[kernelH][kernelW];
    __shared__ volatile float sx[tileInH][tileInW];

    // Calculate tile index.
    int minorIdx = blockIdx.x;
    int tileOutY = minorIdx / p.minorDim;
    minorIdx -= tileOutY * p.minorDim;
    tileOutY *= tileOutH;
    int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
    int majorIdxBase = blockIdx.z * p.loopMajor;
    if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
        return;

    // Load filter kernel (flipped).
    for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
    {
        int ky = tapIdx / kernelW;
        int kx = tapIdx - ky * kernelW;
        float v = 0.0f;
        if (kx < p.kernelW & ky < p.kernelH)
            v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
        sk[ky][kx] = v;
    }

    // Loop over majorDim and outX.
    for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
    for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
    {
        // Load input pixels.
        int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
        int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
        int tileInX = floorDiv(tileMidX, upx);
        int tileInY = floorDiv(tileMidY, upy);
        __syncthreads();
        for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
        {
            int relInY = inIdx / tileInW;
            int relInX = inIdx - relInY * tileInW;
            int inX = relInX + tileInX;
            int inY = relInY + tileInY;
            float v = 0.0f;
            if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
                v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
            sx[relInY][relInX] = v;
        }

        // Loop over output pixels.
        __syncthreads();
        for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
        {
            int relOutY = outIdx / tileOutW;
            int relOutX = outIdx - relOutY * tileOutW;
            int outX = relOutX + tileOutX;
            int outY = relOutY + tileOutY;

            // Setup receptive field.
            int midX = tileMidX + relOutX * downx;
            int midY = tileMidY + relOutY * downy;
            int inX = floorDiv(midX, upx);
            int inY = floorDiv(midY, upy);
            int relInX = inX - tileInX;
            int relInY = inY - tileInY;
            int kernelX = (inX + 1) * upx - midX - 1; // flipped
            int kernelY = (inY + 1) * upy - midY - 1; // flipped

            // Inner loop.
            float v = 0.0f;
            #pragma unroll
            for (int y = 0; y < kernelH / upy; y++)
                #pragma unroll
                for (int x = 0; x < kernelW / upx; x++)
                    v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];

            // Store result.
            if (outX < p.outW & outY < p.outH)
                p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
        }
    }
}

//------------------------------------------------------------------------
// TensorFlow op.

template <class T>
struct UpFirDn2DOp : public OpKernel
{
    UpFirDn2DKernelParams<T> m_attribs;

    UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
    {
        memset(&m_attribs, 0, sizeof(m_attribs));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
        OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
        OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
        OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
    }

    void Compute(OpKernelContext* ctx)
    {
        UpFirDn2DKernelParams<T> p = m_attribs;
        cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();

        const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
        const Tensor& k = ctx->input(1); // [kernelH, kernelW]
        p.x = x.flat<T>().data();
        p.k = k.flat<T>().data();
        OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
        OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
        OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
        OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));

        p.majorDim  = (int)x.dim_size(0);
        p.inH       = (int)x.dim_size(1);
        p.inW       = (int)x.dim_size(2);
        p.minorDim  = (int)x.dim_size(3);
        p.kernelH   = (int)k.dim_size(0);
        p.kernelW   = (int)k.dim_size(1);
        OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));

        p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
        p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
        OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));

        Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
        TensorShape ys;
        ys.AddDim(p.majorDim);
        ys.AddDim(p.outH);
        ys.AddDim(p.outW);
        ys.AddDim(p.minorDim);
        OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
        p.y = y->flat<T>().data();
        OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));

        // Choose CUDA kernel to use.
        void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
        int tileOutW = -1;
        int tileOutH = -1;
        if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
        if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8>;  tileOutW = 32; tileOutH = 8;  }
        if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8>;  tileOutW = 32; tileOutH = 8;  }
        if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8>;  tileOutW = 32; tileOutH = 8;  }
        if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8>;  tileOutW = 32; tileOutH = 8;  }

        // Choose launch params.
        dim3 blockSize;
        dim3 gridSize;
        if (tileOutW > 0 && tileOutH > 0) // small
        {
            p.loopMajor = (p.majorDim - 1) / 16384 + 1;
            p.loopX = 1;
            blockSize = dim3(32 * 8, 1, 1);
            gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
        }
        else // large
        {
            p.loopMajor = (p.majorDim - 1) / 16384 + 1;
            p.loopX = 4;
            blockSize = dim3(4, 32, 1);
            gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
        }

        // Launch CUDA kernel.
        void* args[] = {&p};
        OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
    }
};

REGISTER_OP("UpFirDn2D")
    .Input      ("x: T")
    .Input      ("k: T")
    .Output     ("y: T")
    .Attr       ("T: {float, half}")
    .Attr       ("upx: int = 1")
    .Attr       ("upy: int = 1")
    .Attr       ("downx: int = 1")
    .Attr       ("downy: int = 1")
    .Attr       ("padx0: int = 0")
    .Attr       ("padx1: int = 0")
    .Attr       ("pady0: int = 0")
    .Attr       ("pady1: int = 0");
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);

//------------------------------------------------------------------------