File size: 8,401 Bytes
a0bcaae
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
bb0f5a9
a0bcaae
 
bb0f5a9
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
 
 
a0bcaae
 
 
 
bb0f5a9
 
 
a0bcaae
 
bb0f5a9
 
a0bcaae
bb0f5a9
 
 
 
 
 
 
 
a0bcaae
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0f5a9
 
a0bcaae
 
bb0f5a9
a0bcaae
 
bb0f5a9
 
a0bcaae
 
bb0f5a9
a0bcaae
 
 
 
 
bb0f5a9
a0bcaae
 
 
 
bb0f5a9
 
a0bcaae
 
bb0f5a9
 
 
 
 
 
 
 
a0bcaae
 
 
 
bb0f5a9
 
a0bcaae
 
 
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
bb0f5a9
 
a0bcaae
 
 
 
 
bb0f5a9
 
 
a0bcaae
 
 
 
 
 
 
 
bb0f5a9
a0bcaae
 
bb0f5a9
 
 
 
 
a0bcaae
 
bb0f5a9
 
a0bcaae
 
 
 
bb0f5a9
 
a0bcaae
 
 
bb0f5a9
 
 
 
a0bcaae
bb0f5a9
 
a0bcaae
 
 
bb0f5a9
 
 
 
a0bcaae
bb0f5a9
 
a0bcaae
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) SenseTime Research. All rights reserved.

from legacy import save_obj, load_pkl
import torch
from torch.nn import functional as F
import pandas as pd
from .edit_config import attr_dict
import os


def conv_warper(layer, input, style, noise):
    # the conv should change
    conv = layer.conv
    batch, in_channel, height, width = input.shape

    style = style.view(batch, 1, in_channel, 1, 1)
    weight = conv.scale * conv.weight * style

    if conv.demodulate:
        demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
        weight = weight * demod.view(batch, conv.out_channel, 1, 1, 1)

    weight = weight.view(
        batch * conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
    )

    if conv.upsample:
        input = input.view(1, batch * in_channel, height, width)
        weight = weight.view(
            batch, conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size
        )
        weight = weight.transpose(1, 2).reshape(
            batch * in_channel, conv.out_channel, conv.kernel_size, conv.kernel_size
        )
        out = F.conv_transpose2d(
            input, weight, padding=0, stride=2, groups=batch)
        _, _, height, width = out.shape
        out = out.view(batch, conv.out_channel, height, width)
        out = conv.blur(out)

    elif conv.downsample:
        input = conv.blur(input)
        _, _, height, width = input.shape
        input = input.view(1, batch * in_channel, height, width)
        out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
        _, _, height, width = out.shape
        out = out.view(batch, conv.out_channel, height, width)

    else:
        input = input.view(1, batch * in_channel, height, width)
        out = F.conv2d(input, weight, padding=conv.padding, groups=batch)
        _, _, height, width = out.shape
        out = out.view(batch, conv.out_channel, height, width)

    out = layer.noise(out, noise=noise)
    out = layer.activate(out)

    return out


def decoder(G, style_space, latent, noise):
    # an decoder warper for G
    out = G.input(latent)
    out = conv_warper(G.conv1, out, style_space[0], noise[0])
    skip = G.to_rgb1(out, latent[:, 1])

    i = 1
    for conv1, conv2, noise1, noise2, to_rgb in zip(
        G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
    ):
        out = conv_warper(conv1, out, style_space[i], noise=noise1)
        out = conv_warper(conv2, out, style_space[i+1], noise=noise2)
        skip = to_rgb(out, latent[:, i + 2], skip)
        i += 2
    image = skip

    return image


def encoder_ifg(G, noise, attr_name, truncation=1, truncation_latent=None,
                latent_dir='latent_direction/ss/',
                step=0, total=0, real=False):
    if not real:
        styles = [noise]
        styles = [G.style(s) for s in styles]
    style_space = []

    if truncation < 1:
        if not real:
            style_t = []
            for style in styles:
                style_t.append(truncation_latent + truncation *
                               (style - truncation_latent))
            styles = style_t
        else:  # styles are latent (tensor: 1,18,512), for real PTI output
            truncation_latent = truncation_latent.repeat(
                18, 1).unsqueeze(0)  # (1,512) --> (1,18,512)
            styles = torch.add(truncation_latent, torch.mul(
                torch.sub(noise, truncation_latent), truncation))

    noise = [getattr(G.noises, 'noise_{}'.format(i))
             for i in range(G.num_layers)]
    if not real:
        inject_index = G.n_latent
        latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
    else:
        latent = styles

    style_space.append(G.conv1.conv.modulation(latent[:, 0]))
    i = 1
    for conv1, conv2, noise1, noise2, to_rgb in zip(
        G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
    ):
        style_space.append(conv1.conv.modulation(latent[:, i]))
        style_space.append(conv2.conv.modulation(latent[:, i+1]))
        i += 2

    # get layer, strength by dict
    strength = attr_dict['interface_gan'][attr_name][0]

    if step != 0 and total != 0:
        strength = step / total * strength
    for i in range(15):
        style_vect = load_pkl(os.path.join(
            latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, i)))
        style_vect = torch.from_numpy(style_vect).to(latent.device).float()
        style_space[i] += style_vect * strength

    return style_space, latent, noise


def encoder_ss(G, noise, attr_name, truncation=1, truncation_latent=None,
               statics_dir="latent_direction/ss_statics",
               latent_dir="latent_direction/ss/",
               step=0, total=0, real=False):
    if not real:
        styles = [noise]
        styles = [G.style(s) for s in styles]
    style_space = []

    if truncation < 1:
        if not real:
            style_t = []
            for style in styles:
                style_t.append(
                    truncation_latent + truncation *
                    (style - truncation_latent)
                )
            styles = style_t
        else:  # styles are latent (tensor: 1,18,512), for real PTI output
            truncation_latent = truncation_latent.repeat(
                18, 1).unsqueeze(0)  # (1,512) --> (1,18,512)
            styles = torch.add(truncation_latent, torch.mul(
                torch.sub(noise, truncation_latent), truncation))

    noise = [getattr(G.noises, 'noise_{}'.format(i))
             for i in range(G.num_layers)]

    if not real:
        inject_index = G.n_latent
        latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
    else:
        latent = styles

    style_space.append(G.conv1.conv.modulation(latent[:, 0]))
    i = 1
    for conv1, conv2, noise1, noise2, to_rgb in zip(
        G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs
    ):
        style_space.append(conv1.conv.modulation(latent[:, i]))
        style_space.append(conv2.conv.modulation(latent[:, i+1]))
        i += 2
    # get threshold, layer, strength by dict
    layer, strength, threshold = attr_dict['stylespace'][attr_name]

    statis_dir = os.path.join(
        statics_dir, "{}_statis/{}".format(attr_name, layer))
    statis_csv_path = os.path.join(statis_dir, "statis.csv")
    statis_df = pd.read_csv(statis_csv_path)
    statis_df = statis_df.sort_values(by='channel', ascending=True)
    ch_mask = statis_df['strength'].values
    ch_mask = torch.from_numpy(ch_mask).to(latent.device).float()
    ch_mask = (ch_mask.abs() > threshold).float()
    style_vect = load_pkl(os.path.join(
        latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, layer)))
    style_vect = torch.from_numpy(style_vect).to(latent.device).float()

    style_vect = style_vect * ch_mask

    if step != 0 and total != 0:
        strength = step / total * strength

    style_space[layer] += style_vect * strength

    return style_space, latent, noise


def encoder_sefa(G, noise, attr_name, truncation=1, truncation_latent=None,
                 latent_dir='latent_direction/sefa/',
                 step=0, total=0, real=False):
    if not real:
        styles = [noise]
        styles = [G.style(s) for s in styles]

    if truncation < 1:
        if not real:
            style_t = []
            for style in styles:
                style_t.append(
                    truncation_latent + truncation *
                    (style - truncation_latent)
                )
            styles = style_t
        else:
            truncation_latent = truncation_latent.repeat(
                18, 1).unsqueeze(0)  # (1,512) --> (1,18,512)
            styles = torch.add(truncation_latent, torch.mul(
                torch.sub(noise, truncation_latent), truncation))

    noise = [getattr(G.noises, 'noise_{}'.format(i))
             for i in range(G.num_layers)]
    if not real:
        inject_index = G.n_latent
        latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
    else:
        latent = styles

    layer, strength = attr_dict['sefa'][attr_name]

    sefa_vect = torch.load(os.path.join(
        latent_dir, '{}.pt'.format(attr_name))).to(latent.device).float()
    if step != 0 and total != 0:
        strength = step / total * strength
    for l in layer:
        latent[:, l, :] += (sefa_vect * strength * 2)

    return latent, noise