Spaces:
Runtime error
Runtime error
File size: 20,728 Bytes
a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 a0bcaae bb0f5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
# Copyright (c) SenseTime Research. All rights reserved.
import torch
import torch.nn.functional as F
from tqdm import tqdm
from lpips import LPIPS
import numpy as np
from torch_utils.models import Generator as bodyGAN
from torch_utils.models_face import Generator as FaceGAN
import dlib
from utils.face_alignment import align_face_for_insetgan
from utils.util import visual, tensor_to_numpy, numpy_to_tensor
import legacy
import os
import click
class InsetGAN(torch.nn.Module):
def __init__(self, stylebody_ckpt, styleface_ckpt):
super().__init__()
# convert pkl to pth
if not os.path.exists(stylebody_ckpt.replace('.pkl', '.pth')):
legacy.convert(
stylebody_ckpt, stylebody_ckpt.replace('.pkl', '.pth'))
stylebody_ckpt = stylebody_ckpt.replace('.pkl', '.pth')
if not os.path.exists(styleface_ckpt.replace('.pkl', '.pth')):
legacy.convert(
styleface_ckpt, styleface_ckpt.replace('.pkl', '.pth'))
styleface_ckpt = styleface_ckpt.replace('.pkl', '.pth')
# dual generator
config = {"latent": 512, "n_mlp": 8, "channel_multiplier": 2}
self.body_generator = bodyGAN(
size=1024,
style_dim=config["latent"],
n_mlp=config["n_mlp"],
channel_multiplier=config["channel_multiplier"]
)
self.body_generator.load_state_dict(
torch.load(stylebody_ckpt)['g_ema'])
self.body_generator.eval().requires_grad_(False).cuda()
self.face_generator = FaceGAN(
size=1024,
style_dim=config["latent"],
n_mlp=config["n_mlp"],
channel_multiplier=config["channel_multiplier"]
)
self.face_generator.load_state_dict(
torch.load(styleface_ckpt)['g_ema'])
self.face_generator.eval().requires_grad_(False).cuda()
# crop function
self.dlib_predictor = dlib.shape_predictor(
'./pretrained_models/shape_predictor_68_face_landmarks.dat')
self.dlib_cnn_face_detector = dlib.cnn_face_detection_model_v1(
"pretrained_models/mmod_human_face_detector.dat")
# criterion
self.lpips_loss = LPIPS(net='alex').cuda().eval()
self.l1_loss = torch.nn.L1Loss(reduction='mean')
def loss_coarse(self, A_face, B, p1=500, p2=0.05):
A_face = F.interpolate(A_face, size=(64, 64), mode='area')
B = F.interpolate(B, size=(64, 64), mode='area')
loss_l1 = p1 * self.l1_loss(A_face, B)
loss_lpips = p2 * self.lpips_loss(A_face, B)
return loss_l1 + loss_lpips
@staticmethod
def get_border_mask(A, x, spec):
mask = torch.zeros_like(A)
mask[:, :, :x, ] = 1
mask[:, :, -x:, ] = 1
mask[:, :, :, :x] = 1
mask[:, :, :, -x:] = 1
return mask
@staticmethod
def get_body_mask(A, crop, padding=4):
mask = torch.ones_like(A)
mask[:, :, crop[1]-padding:crop[3]+padding,
crop[0]-padding:crop[2]+padding] = 0
return mask
def loss_border(self, A_face, B, p1=10000, p2=2, spec=None):
mask = self.get_border_mask(A_face, 8, spec)
loss_l1 = p1 * self.l1_loss(A_face*mask, B*mask)
loss_lpips = p2 * self.lpips_loss(A_face*mask, B*mask)
return loss_l1 + loss_lpips
def loss_body(self, A, B, crop, p1=9000, p2=0.1):
padding = int((crop[3] - crop[1]) / 20)
mask = self.get_body_mask(A, crop, padding)
loss_l1 = p1 * self.l1_loss(A*mask, B*mask)
loss_lpips = p2 * self.lpips_loss(A*mask, B*mask)
return loss_l1+loss_lpips
def loss_face(self, A, B, crop, p1=5000, p2=1.75):
mask = 1 - self.get_body_mask(A, crop)
loss_l1 = p1 * self.l1_loss(A*mask, B*mask)
loss_lpips = p2 * self.lpips_loss(A*mask, B*mask)
return loss_l1+loss_lpips
def loss_reg(self, w, w_mean, p1, w_plus_delta=None, p2=None):
return p1 * torch.mean(((w - w_mean) ** 2)) + p2 * torch.mean(w_plus_delta ** 2)
# FFHQ type
def detect_face_dlib(self, img):
# tensor to numpy array rgb uint8
img = tensor_to_numpy(img)
aligned_image, crop, rect = align_face_for_insetgan(img=img,
detector=self.dlib_cnn_face_detector,
predictor=self.dlib_predictor,
output_size=256)
aligned_image = np.array(aligned_image)
aligned_image = numpy_to_tensor(aligned_image)
return aligned_image, crop, rect
# joint optimization
def dual_optimizer(self,
face_w,
body_w,
joint_steps=500,
face_initial_learning_rate=0.02,
body_initial_learning_rate=0.05,
lr_rampdown_length=0.25,
lr_rampup_length=0.05,
seed=None,
output_path=None,
video=0):
'''
Given a face_w, optimize a body_w with suitable body pose & shape for face_w
'''
def visual_(path, synth_body, synth_face, body_crop, step, both=False, init_body_with_face=None):
tmp = synth_body.clone().detach()
tmp[:, :, body_crop[1]:body_crop[3],
body_crop[0]:body_crop[2]] = synth_face
if both:
tmp = torch.cat([synth_body, tmp], dim=3)
save_path = os.path.join(path, f"{step:04d}.jpg")
visual(tmp, save_path)
def forward(face_w_opt,
body_w_opt,
face_w_delta,
body_w_delta,
body_crop,
update_crop=False
):
if face_w_opt.shape[1] != 18:
face_ws = (face_w_opt).repeat([1, 18, 1])
else:
face_ws = face_w_opt.clone()
face_ws = face_ws + face_w_delta
synth_face, _ = self.face_generator(
[face_ws], input_is_latent=True, randomize_noise=False)
body_ws = (body_w_opt).repeat([1, 18, 1])
body_ws = body_ws + body_w_delta
synth_body, _ = self.body_generator(
[body_ws], input_is_latent=True, randomize_noise=False)
if update_crop:
old_r = (body_crop[3]-body_crop[1]
) // 2, (body_crop[2]-body_crop[0]) // 2
_, body_crop, _ = self.detect_face_dlib(synth_body)
center = (body_crop[1] + body_crop[3]
) // 2, (body_crop[0] + body_crop[2]) // 2
body_crop = (center[1] - old_r[1], center[0] - old_r[0],
center[1] + old_r[1], center[0] + old_r[0])
synth_body_face = synth_body[:, :, body_crop[1]:body_crop[3], body_crop[0]:body_crop[2]]
if synth_face.shape[2] > body_crop[3]-body_crop[1]:
synth_face_resize = F.interpolate(synth_face, size=(
body_crop[3]-body_crop[1], body_crop[2]-body_crop[0]), mode='area')
return synth_body, synth_body_face, synth_face, synth_face_resize, body_crop
def update_lr(init_lr, step, num_steps, lr_rampdown_length, lr_rampup_length):
t = step / num_steps
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = init_lr * lr_ramp
return lr
# update output_path
output_path = os.path.join(output_path, seed)
os.makedirs(output_path, exist_ok=True)
# define optimized params
body_w_mean = self.body_generator.mean_latent(10000).detach()
face_w_opt = face_w.clone().detach().requires_grad_(True)
body_w_opt = body_w.clone().detach().requires_grad_(True)
face_w_delta = torch.zeros_like(
face_w.repeat([1, 18, 1])).requires_grad_(True)
body_w_delta = torch.zeros_like(
body_w.repeat([1, 18, 1])).requires_grad_(True)
# generate ref face & body
ref_body, _ = self.body_generator(
[body_w.repeat([1, 18, 1])], input_is_latent=True, randomize_noise=False)
# for inversion
ref_face, _ = self.face_generator(
[face_w.repeat([1, 18, 1])], input_is_latent=True, randomize_noise=False)
# get initilized crop
_, body_crop, _ = self.detect_face_dlib(ref_body)
# NOTE: this is face rect only. no FFHQ type.
_, _, face_crop = self.detect_face_dlib(ref_face)
# create optimizer
face_optimizer = torch.optim.Adam([face_w_opt, face_w_delta], betas=(
0.9, 0.999), lr=face_initial_learning_rate)
body_optimizer = torch.optim.Adam([body_w_opt, body_w_delta], betas=(
0.9, 0.999), lr=body_initial_learning_rate)
global_step = 0
# Stage1: remove background of face image
face_steps = 25
pbar = tqdm(range(face_steps))
for step in pbar:
face_lr = update_lr(face_initial_learning_rate / 2, step,
face_steps, lr_rampdown_length, lr_rampup_length)
for param_group in face_optimizer.param_groups:
param_group['lr'] = face_lr
synth_body, synth_body_face, synth_face_raw, synth_face, body_crop = forward(face_w_opt,
body_w_opt,
face_w_delta,
body_w_delta,
body_crop)
loss_face = self.loss_face(
synth_face_raw, ref_face, face_crop, 5000, 1.75)
loss_coarse = self.loss_coarse(
synth_face, synth_body_face, 50, 0.05)
loss_border = self.loss_border(
synth_face, synth_body_face, 1000, 0.1)
loss = loss_coarse + loss_border + loss_face
face_optimizer.zero_grad()
loss.backward()
face_optimizer.step()
# visualization
if video:
visual_(output_path, synth_body,
synth_face, body_crop, global_step)
pbar.set_description(
(
f"face: {step:.4f}, lr: {face_lr}, loss: {loss.item():.2f}, loss_coarse: {loss_coarse.item():.2f};"
f"loss_border: {loss_border.item():.2f}, loss_face: {loss_face.item():.2f};"
)
)
global_step += 1
# Stage2: find a suitable body
body_steps = 150
pbar = tqdm(range(body_steps))
for step in pbar:
body_lr = update_lr(body_initial_learning_rate, step,
body_steps, lr_rampdown_length, lr_rampup_length)
update_crop = True if (step % 50 == 0) else False
# update_crop = False
for param_group in body_optimizer.param_groups:
param_group['lr'] = body_lr
synth_body, synth_body_face, synth_face_raw, synth_face, body_crop = forward(face_w_opt,
body_w_opt,
face_w_delta,
body_w_delta,
body_crop,
update_crop=update_crop)
loss_coarse = self.loss_coarse(
synth_face, synth_body_face, 500, 0.05)
loss_border = self.loss_border(
synth_face, synth_body_face, 2500, 0)
loss_body = self.loss_body(
synth_body, ref_body, body_crop, 9000, 0.1)
loss_reg = self.loss_reg(
body_w_opt, body_w_mean, 15000, body_w_delta, 0)
loss = loss_coarse + loss_border + loss_body + loss_reg
body_optimizer.zero_grad()
loss.backward()
body_optimizer.step()
# visualization
if video:
visual_(output_path, synth_body,
synth_face, body_crop, global_step)
pbar.set_description(
(
f"body: {step:.4f}, lr: {body_lr}, loss: {loss.item():.2f}, loss_coarse: {loss_coarse.item():.2f};"
f"loss_border: {loss_border.item():.2f}, loss_body: {loss_body.item():.2f}, loss_reg: {loss_reg:.2f}"
)
)
global_step += 1
# Stage3: joint optimization
interval = 50
joint_face_steps = joint_steps // 2
joint_body_steps = joint_steps // 2
face_step = 0
body_step = 0
pbar = tqdm(range(joint_steps))
flag = -1
for step in pbar:
if step % interval == 0:
flag += 1
text_flag = 'optimize_face' if flag % 2 == 0 else 'optimize_body'
synth_body, synth_body_face, synth_face_raw, synth_face, body_crop = forward(face_w_opt,
body_w_opt,
face_w_delta,
body_w_delta,
body_crop)
if text_flag == 'optimize_face':
face_lr = update_lr(face_initial_learning_rate, face_step,
joint_face_steps, lr_rampdown_length, lr_rampup_length)
for param_group in face_optimizer.param_groups:
param_group['lr'] = face_lr
loss_face = self.loss_face(
synth_face_raw, ref_face, face_crop, 5000, 1.75)
loss_coarse = self.loss_coarse(
synth_face, synth_body_face, 500, 0.05)
loss_border = self.loss_border(
synth_face, synth_body_face, 25000, 0)
loss = loss_coarse + loss_border + loss_face
face_optimizer.zero_grad()
loss.backward()
face_optimizer.step()
pbar.set_description(
(
f"face: {step}, lr: {face_lr:.4f}, loss: {loss.item():.2f}, loss_coarse: {loss_coarse.item():.2f};"
f"loss_border: {loss_border.item():.2f}, loss_face: {loss_face.item():.2f};"
)
)
face_step += 1
else:
body_lr = update_lr(body_initial_learning_rate, body_step,
joint_body_steps, lr_rampdown_length, lr_rampup_length)
for param_group in body_optimizer.param_groups:
param_group['lr'] = body_lr
loss_coarse = self.loss_coarse(
synth_face, synth_body_face, 500, 0.05)
loss_border = self.loss_border(
synth_face, synth_body_face, 2500, 0)
loss_body = self.loss_body(
synth_body, ref_body, body_crop, 9000, 0.1)
loss_reg = self.loss_reg(
body_w_opt, body_w_mean, 25000, body_w_delta, 0)
loss = loss_coarse + loss_border + loss_body + loss_reg
body_optimizer.zero_grad()
loss.backward()
body_optimizer.step()
pbar.set_description(
(
f"body: {step}, lr: {body_lr:.4f}, loss: {loss.item():.2f}, loss_coarse: {loss_coarse.item():.2f};"
f"loss_border: {loss_border.item():.2f}, loss_body: {loss_body.item():.2f}, loss_reg: {loss_reg:.2f}"
)
)
body_step += 1
if video:
visual_(output_path, synth_body,
synth_face, body_crop, global_step)
global_step += 1
return face_w_opt.repeat([1, 18, 1])+face_w_delta, body_w_opt.repeat([1, 18, 1])+body_w_delta, body_crop
"""
Jointly combine and optimize generated faces and bodies .
Examples:
\b
# Combine the generate human full-body image from the provided StyleGAN-Human pre-trained model
# and the generated face image from FFHQ model, optimize both latent codes to produce the coherent face-body image
python insetgan.py --body_network=pretrained_models/stylegan_human_v2_1024.pkl --face_network=pretrained_models/ffhq.pkl \\
--body_seed=82 --face_seed=43 --trunc=0.6 --outdir=outputs/insetgan/ --video 1
"""
@click.command()
@click.pass_context
@click.option('--face_network', default="./pretrained_models/ffhq.pkl", help='Network pickle filename', required=True)
@click.option('--body_network', default='./pretrained_models/stylegan2_1024.pkl', help='Network pickle filename', required=True)
@click.option('--face_seed', type=int, default=82, help='selected random seed')
@click.option('--body_seed', type=int, default=43, help='selected random seed')
@click.option('--joint_steps', type=int, default=500, help='num steps for joint optimization')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=0.6, show_default=True)
@click.option('--outdir', help='Where to save the output images', default="outputs/insetgan/", type=str, required=True, metavar='DIR')
@click.option('--video', help="set to 1 if want to save video", type=int, default=0)
def main(
ctx: click.Context,
face_network: str,
body_network: str,
face_seed: int,
body_seed: int,
joint_steps: int,
truncation_psi: float,
outdir: str,
video: int):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
insgan = InsetGAN(body_network, face_network)
os.makedirs(outdir, exist_ok=True)
face_z = np.random.RandomState(face_seed).randn(1, 512).astype(np.float32)
face_mean = insgan.face_generator.mean_latent(3000)
face_w = insgan.face_generator.get_latent(
torch.from_numpy(face_z).to(device)) # [N, L, C]
face_w = truncation_psi * face_w + (1-truncation_psi) * face_mean
face_img, _ = insgan.face_generator([face_w], input_is_latent=True)
body_z = np.random.RandomState(body_seed).randn(1, 512).astype(np.float32)
body_mean = insgan.body_generator.mean_latent(3000)
body_w = insgan.body_generator.get_latent(
torch.from_numpy(body_z).to(device)) # [N, L, C]
body_w = truncation_psi * body_w + (1-truncation_psi) * body_mean
body_img, _ = insgan.body_generator([body_w], input_is_latent=True)
_, body_crop, _ = insgan.detect_face_dlib(body_img)
face_img = F.interpolate(face_img, size=(
body_crop[3]-body_crop[1], body_crop[2]-body_crop[0]), mode='area')
cp_body = body_img.clone()
cp_body[:, :, body_crop[1]:body_crop[3],
body_crop[0]:body_crop[2]] = face_img
optim_face_w, optim_body_w, crop = insgan.dual_optimizer(
face_w,
body_w,
joint_steps=joint_steps,
seed=f'{face_seed:04d}_{body_seed:04d}',
output_path=outdir,
video=video
)
if video:
ffmpeg_cmd = f"ffmpeg -hide_banner -loglevel error -i ./{outdir}/{face_seed:04d}_{body_seed:04d}/%04d.jpg -c:v libx264 -vf fps=30 -pix_fmt yuv420p ./{outdir}/{face_seed:04d}_{body_seed:04d}.mp4"
os.system(ffmpeg_cmd)
new_face_img, _ = insgan.face_generator(
[optim_face_w], input_is_latent=True)
new_shape = crop[3] - crop[1], crop[2] - crop[0]
new_face_img_crop = F.interpolate(
new_face_img, size=new_shape, mode='area')
seamless_body, _ = insgan.body_generator(
[optim_body_w], input_is_latent=True)
seamless_body[:, :, crop[1]:crop[3], crop[0]:crop[2]] = new_face_img_crop
temp = torch.cat([cp_body, seamless_body], dim=3)
visual(temp, f"{outdir}/{face_seed:04d}_{body_seed:04d}.png")
if __name__ == "__main__":
main()
|