DreamStream-1 commited on
Commit
95ac724
·
verified ·
1 Parent(s): 1991a27

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -90
app.py CHANGED
@@ -1,10 +1,9 @@
1
  import os
2
  import re
3
- import io
4
  from datetime import datetime
5
- import PyPDF2
6
  import torch
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
 
8
  from groq import Groq
9
  import gradio as gr
10
  from docxtpl import DocxTemplate
@@ -48,49 +47,64 @@ def extract_skills_llama(text):
48
  except Exception as e:
49
  raise RuntimeError(f"Error during skill extraction: {e}")
50
 
51
- # --- Job Description Processing --- #
52
- def process_job_description(job_description_text):
53
- """Processes the job description text and extracts relevant skills."""
54
- job_description_text = preprocess_text(job_description_text)
55
- return extract_skills_llama(job_description_text)
56
-
57
- # --- Text Preprocessing --- #
58
- def preprocess_text(text):
59
- """Preprocesses text for analysis (lowercase, punctuation removal)."""
60
- text = text.lower()
61
- text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
62
- return re.sub(r'\s+', ' ', text).strip() # Remove extra whitespace
63
-
64
- # --- Resume Similarity Calculation --- #
65
- def calculate_resume_similarity(resume_text, job_description_text):
66
- """Calculates similarity score between resume and job description using a sentence transformer model."""
67
- model_name = "cross-encoder/stsb-roberta-base"
68
- tokenizer = AutoTokenizer.from_pretrained(model_name)
69
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
70
-
71
- inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True)
72
- with torch.no_grad():
73
- outputs = model(**inputs)
74
- similarity_score = torch.sigmoid(outputs.logits).item()
75
- return similarity_score
 
 
 
 
 
 
 
 
 
 
76
 
77
- # --- Communication Generation --- #
78
- def communication_generator(resume_skills, job_description_skills, similarity_score, max_length=150):
79
- """Generates a communication response based on the extracted skills from the resume and job description."""
80
  model_name = "google/flan-t5-base"
81
  tokenizer = AutoTokenizer.from_pretrained(model_name)
82
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
83
 
84
- # Assess candidate fit based on similarity score
85
- fit_status = "fit for the job" if similarity_score >= 0.7 else "not a fit for the job"
86
-
87
- # Create a more detailed communication message
 
88
  message = (
89
- f"After a thorough review of the candidate's resume, we found a significant alignment "
90
- f"between their skills and the job description requirements. The candidate possesses the following "
91
- f"key skills: {', '.join(resume_skills)}. These align well with the job requirements, particularly in areas such as "
92
- f"{', '.join(job_description_skills)}. The candidate’s diverse expertise suggests they would make a valuable addition to our team. "
93
- f"We believe the candidate is {fit_status}. If further evaluation is needed, please let us know how we can assist."
 
 
 
 
94
  )
95
 
96
  inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
@@ -111,70 +125,65 @@ def sentiment_analysis(text):
111
  predicted_sentiment = torch.argmax(outputs.logits).item()
112
  return ["Negative", "Neutral", "Positive"][predicted_sentiment]
113
 
114
- # --- Resume Analysis Function --- #
115
  def analyze_resume(resume_file, job_description_file):
116
- """Analyzes the resume and job description, returning similarity score, skills, and communication response."""
117
- # Extract resume text based on file type
118
  try:
119
  resume_text = extract_text_from_file(resume_file.name)
120
  job_description_text = extract_text_from_file(job_description_file.name)
121
  except ValueError as ve:
122
  return str(ve)
123
 
124
- # Analyze texts
125
- job_description_skills = process_job_description(job_description_text)
126
  resume_skills = extract_skills_llama(resume_text)
127
- similarity_score = calculate_resume_similarity(resume_text, job_description_text)
128
- communication_response = communication_generator(resume_skills, job_description_skills, similarity_score)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  sentiment = sentiment_analysis(resume_text)
130
 
 
131
  return (
132
- f"Similarity Score: {similarity_score:.2f}",
 
 
133
  communication_response,
134
  f"Sentiment: {sentiment}",
135
- ", ".join(resume_skills),
136
- ", ".join(job_description_skills),
 
 
 
 
137
  )
138
 
139
- # --- Offer Letter Generation --- #
140
- def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
141
- """Generates an offer letter from a template."""
142
- try:
143
- start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y")
144
- except ValueError:
145
- return "Invalid date format. Please use YYYY-MM-DD."
146
-
147
- context = {
148
- 'candidate_name': candidate_name,
149
- 'role': role,
150
- 'start_date': start_date,
151
- 'hours': hours
152
- }
153
-
154
- doc = DocxTemplate(template_file)
155
- doc.render(context)
156
-
157
- offer_letter_path = f"{candidate_name.replace(' ', '_')}_offer_letter.docx"
158
- doc.save(offer_letter_path)
159
-
160
- return offer_letter_path
161
-
162
  # --- Gradio Interface --- #
163
- iface = gr.Interface(
164
- fn=analyze_resume,
165
- inputs=[
166
- gr.File(label="Upload Resume (PDF/TXT)"),
167
- gr.File(label="Upload Job Description (PDF/TXT)")
168
- ],
169
- outputs=[
170
- gr.Textbox(label="Similarity Score"),
171
- gr.Textbox(label="Communication Response"),
172
- gr.Textbox(label="Sentiment Analysis"),
173
- gr.Textbox(label="Extracted Resume Skills"),
174
- gr.Textbox(label="Extracted Job Description Skills"),
175
- ],
176
- title="Resume and Job Description Analyzer",
177
- description="This tool analyzes a resume against a job description to extract skills, calculate similarity, and generate communication responses."
178
- )
179
-
180
- iface.launch()
 
1
  import os
2
  import re
 
3
  from datetime import datetime
 
4
  import torch
5
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
6
+ from sentence_transformers import SentenceTransformer, util
7
  from groq import Groq
8
  import gradio as gr
9
  from docxtpl import DocxTemplate
 
47
  except Exception as e:
48
  raise RuntimeError(f"Error during skill extraction: {e}")
49
 
50
+ # --- Qualification and Experience Extraction --- #
51
+ def extract_qualifications(text):
52
+ """Extracts qualifications from text (e.g., degrees, certifications)."""
53
+ # Simplified logic to extract qualifications (can be improved)
54
+ qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
55
+ return qualifications if qualifications else ['No specific qualifications found']
56
+
57
+ def extract_experience(text):
58
+ """Extracts years of experience from the text."""
59
+ experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
60
+ job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
61
+ experience_years = [int(year[0]) for year in experience_years]
62
+ return experience_years, job_titles
63
+
64
+ # --- Matching Function using Semantic Similarity --- #
65
+ def calculate_semantic_similarity(text1, text2):
66
+ """Calculates semantic similarity using a sentence transformer model and returns the score as a percentage."""
67
+ model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
68
+ embeddings1 = model.encode(text1, convert_to_tensor=True)
69
+ embeddings2 = model.encode(text2, convert_to_tensor=True)
70
+ similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item()
71
+
72
+ # Convert similarity score to percentage
73
+ similarity_percentage = similarity_score * 100
74
+ return similarity_percentage
75
+
76
+ # --- Thresholds --- #
77
+ def categorize_similarity(score):
78
+ """Categorizes the similarity score into thresholds for better insights."""
79
+ if score >= 80:
80
+ return "High Match"
81
+ elif score >= 50:
82
+ return "Moderate Match"
83
+ else:
84
+ return "Low Match"
85
 
86
+ # --- Communication Generation with Enhanced Response --- #
87
+ def communication_generator(resume_skills, job_description_skills, skills_similarity, qualifications_similarity, experience_similarity, max_length=200):
88
+ """Generates a more detailed communication response based on similarity scores."""
89
  model_name = "google/flan-t5-base"
90
  tokenizer = AutoTokenizer.from_pretrained(model_name)
91
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
92
 
93
+ # Assess candidate fit based on similarity scores
94
+ fit_status = "strong fit" if skills_similarity >= 80 and qualifications_similarity >= 80 and experience_similarity >= 80 else \
95
+ "moderate fit" if skills_similarity >= 50 else "weak fit"
96
+
97
+ # Create a detailed communication message based on match levels
98
  message = (
99
+ f"After a detailed analysis of the candidate's resume, we found the following insights:\n\n"
100
+ f"- **Skills Match**: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})\n"
101
+ f"- **Qualifications Match**: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})\n"
102
+ f"- **Experience Match**: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})\n\n"
103
+ f"The overall assessment indicates that the candidate is a {fit_status} for the role. "
104
+ f"Skills such as {', '.join(resume_skills)} align {categorize_similarity(skills_similarity).lower()} with the job's requirements of {', '.join(job_description_skills)}. "
105
+ f"In terms of qualifications and experience, the candidate shows a {categorize_similarity(qualifications_similarity).lower()} match with the role's needs. "
106
+ f"Based on these findings, we believe the candidate could potentially excel in the role, "
107
+ f"but additional evaluation or interviews are recommended for further clarification."
108
  )
109
 
110
  inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
 
125
  predicted_sentiment = torch.argmax(outputs.logits).item()
126
  return ["Negative", "Neutral", "Positive"][predicted_sentiment]
127
 
128
+ # --- Updated Resume Analysis Function --- #
129
  def analyze_resume(resume_file, job_description_file):
130
+ """Analyzes the resume and job description, returning similarity score, skills, qualifications, and experience matching."""
131
+ # Extract resume and job description text
132
  try:
133
  resume_text = extract_text_from_file(resume_file.name)
134
  job_description_text = extract_text_from_file(job_description_file.name)
135
  except ValueError as ve:
136
  return str(ve)
137
 
138
+ # Extract skills, qualifications, and experience
 
139
  resume_skills = extract_skills_llama(resume_text)
140
+ job_description_skills = process_job_description(job_description_text)
141
+ resume_qualifications = extract_qualifications(resume_text)
142
+ job_description_qualifications = extract_qualifications(job_description_text)
143
+ resume_experience, resume_job_titles = extract_experience(resume_text)
144
+ job_description_experience, job_description_titles = extract_experience(job_description_text)
145
+
146
+ # Calculate semantic similarity for different sections in percentages
147
+ skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
148
+ qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
149
+ experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))
150
+
151
+ # Generate a communication response based on the similarity percentages
152
+ communication_response = communication_generator(
153
+ resume_skills, job_description_skills,
154
+ skills_similarity, qualifications_similarity, experience_similarity
155
+ )
156
+
157
+ # Perform Sentiment Analysis
158
  sentiment = sentiment_analysis(resume_text)
159
 
160
+ # Return the results including thresholds and percentage scores
161
  return (
162
+ f"Skills Similarity: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})",
163
+ f"Qualifications Similarity: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})",
164
+ f"Experience Similarity: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})",
165
  communication_response,
166
  f"Sentiment: {sentiment}",
167
+ f"Resume Skills: {', '.join(resume_skills)}",
168
+ f"Job Description Skills: {', '.join(job_description_skills)}",
169
+ f"Resume Qualifications: {', '.join(resume_qualifications)}",
170
+ f"Job Description Qualifications: {', '.join(job_description_qualifications)}",
171
+ f"Resume Experience: {', '.join([f'{y} years' for y, _ in resume_experience])}",
172
+ f"Job Description Experience: {', '.join([f'{y} years' for y, _ in job_description_experience])}"
173
  )
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  # --- Gradio Interface --- #
176
+ def process_job_description(job_description_text):
177
+ """Simplified job description processing for skills (can be extended)."""
178
+ return re.findall(r'\b(Python|AWS|Machine Learning|Deep Learning|NLP|Docker|Kubernetes)\b', job_description_text, re.IGNORECASE)
179
+
180
+ def gradio_app(resume_file, job_description_file):
181
+ return analyze_resume(resume_file, job_description_file)
182
+
183
+ # --- Launch Gradio App --- #
184
+ gr.Interface(fn=gradio_app,
185
+ inputs=["file", "file"],
186
+ outputs="text",
187
+ title="Resume and Job Description Matching Tool",
188
+ description="Upload a resume and a job description to assess the matching scores for skills, qualifications, and experience."
189
+ ).launch()