Spaces:
Runtime error
Runtime error
File size: 30,628 Bytes
12b7f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import PIL
import torch
import torchvision.transforms.functional as TF
from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.modeling_utils import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class CLIPCameraProjection(ModelMixin, ConfigMixin):
"""
A Projection layer for CLIP embedding and camera embedding.
Parameters:
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed`
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
additional_embeddings`.
"""
@register_to_config
def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4):
super().__init__()
self.embedding_dim = embedding_dim
self.additional_embeddings = additional_embeddings
self.input_dim = self.embedding_dim + self.additional_embeddings
self.output_dim = self.embedding_dim
self.proj = torch.nn.Linear(self.input_dim, self.output_dim)
def forward(
self,
embedding: torch.FloatTensor,
):
"""
The [`PriorTransformer`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`):
The currently input embeddings.
Returns:
The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`).
"""
proj_embedding = self.proj(embedding)
return proj_embedding
class Zero123Pipeline(DiffusionPipeline):
r"""
Pipeline to generate variations from an input image using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
# TODO: feature_extractor is required to encode images (if they are in PIL format),
# we should give a descriptive message if the pipeline doesn't have one.
_optional_components = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
image_encoder: CLIPVisionModelWithProjection,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
clip_camera_projection: CLIPCameraProjection,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warn(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(
unet.config, "_diffusers_version"
) and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse(
"0.9.0.dev0"
)
is_unet_sample_size_less_64 = (
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate(
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False
)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
clip_camera_projection=clip_camera_projection,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [
self.unet,
self.image_encoder,
self.vae,
self.safety_checker,
]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_image(
self,
image,
elevation,
azimuth,
distance,
device,
num_images_per_prompt,
do_classifier_free_guidance,
clip_image_embeddings=None,
image_camera_embeddings=None,
):
dtype = next(self.image_encoder.parameters()).dtype
if image_camera_embeddings is None:
if image is None:
assert clip_image_embeddings is not None
image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype)
else:
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(
images=image, return_tensors="pt"
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
bs_embed, seq_len, _ = image_embeddings.shape
if isinstance(elevation, float):
elevation = torch.as_tensor(
[elevation] * bs_embed, dtype=dtype, device=device
)
if isinstance(azimuth, float):
azimuth = torch.as_tensor(
[azimuth] * bs_embed, dtype=dtype, device=device
)
if isinstance(distance, float):
distance = torch.as_tensor(
[distance] * bs_embed, dtype=dtype, device=device
)
camera_embeddings = torch.stack(
[
torch.deg2rad(elevation),
torch.sin(torch.deg2rad(azimuth)),
torch.cos(torch.deg2rad(azimuth)),
distance,
],
dim=-1,
)[:, None, :]
image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1)
# project (image, camera) embeddings to the same dimension as clip embeddings
image_embeddings = self.clip_camera_projection(image_embeddings)
else:
image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype)
bs_embed, seq_len, _ = image_embeddings.shape
# duplicate image embeddings for each generation per prompt, using mps friendly method
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
image_embeddings = image_embeddings.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
return image_embeddings
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(
image, output_type="pil"
)
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(
feature_extractor_input, return_tensors="pt"
).to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, image, height, width, callback_steps):
# TODO: check image size or adjust image size to (height, width)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None
and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _get_latent_model_input(
self,
latents: torch.FloatTensor,
image: Optional[
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
],
num_images_per_prompt: int,
do_classifier_free_guidance: bool,
image_latents: Optional[torch.FloatTensor] = None,
):
if isinstance(image, PIL.Image.Image):
image_pt = TF.to_tensor(image).unsqueeze(0).to(latents)
elif isinstance(image, list):
image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to(
latents
)
elif isinstance(image, torch.Tensor):
image_pt = image
else:
image_pt = None
if image_pt is None:
assert image_latents is not None
image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0)
else:
image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1]
# FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor
# but zero123 was not trained this way
image_pt = self.vae.encode(image_pt).latent_dist.mode()
image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
latent_model_input = torch.cat(
[
torch.cat([latents, latents], dim=0),
torch.cat([torch.zeros_like(image_pt), image_pt], dim=0),
],
dim=1,
)
else:
latent_model_input = torch.cat([latents, image_pt], dim=1)
return latent_model_input
@torch.no_grad()
def __call__(
self,
image: Optional[
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
] = None,
elevation: Optional[Union[float, torch.FloatTensor]] = None,
azimuth: Optional[Union[float, torch.FloatTensor]] = None,
distance: Optional[Union[float, torch.FloatTensor]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 3.0,
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
clip_image_embeddings: Optional[torch.FloatTensor] = None,
image_camera_embeddings: Optional[torch.FloatTensor] = None,
image_latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
configuration of
[this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
`CLIPImageProcessor`
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
# TODO: check input elevation, azimuth, and distance
# TODO: check image, clip_image_embeddings, image_latents
self.check_inputs(image, height, width, callback_steps)
# 2. Define call parameters
if isinstance(image, PIL.Image.Image):
batch_size = 1
elif isinstance(image, list):
batch_size = len(image)
elif isinstance(image, torch.Tensor):
batch_size = image.shape[0]
else:
assert image_latents is not None
assert (
clip_image_embeddings is not None or image_camera_embeddings is not None
)
batch_size = image_latents.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input image
if isinstance(image, PIL.Image.Image) or isinstance(image, list):
pil_image = image
elif isinstance(image, torch.Tensor):
pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
else:
pil_image = None
image_embeddings = self._encode_image(
pil_image,
elevation,
azimuth,
distance,
device,
num_images_per_prompt,
do_classifier_free_guidance,
clip_image_embeddings,
image_camera_embeddings,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
# num_channels_latents = self.unet.config.in_channels
num_channels_latents = 4 # FIXME: hard-coded
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = self._get_latent_model_input(
latents,
image,
num_images_per_prompt,
do_classifier_free_guidance,
image_latents,
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(
latents / self.vae.config.scaling_factor, return_dict=False
)[0]
image, has_nsfw_concept = self.run_safety_checker(
image, device, image_embeddings.dtype
)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(
image, output_type=output_type, do_denormalize=do_denormalize
)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
) |