Spaces:
Running
Running
File size: 5,944 Bytes
19a06bc 597d2bd 19a06bc ddab86e 19a06bc b8e252c e2a19c2 1d7ab61 a1ef31a 3c32de9 a1ef31a 3c32de9 a1ef31a 5c1f206 a1ef31a 3627dc3 a1ef31a f22913a 9879fa4 03d4605 a1ef31a 03d4605 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 3c32de9 3209527 3c32de9 3209527 3c32de9 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a f9d8304 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 3209527 a1ef31a f9d8304 a1ef31a 3209527 a1ef31a f9d8304 a1ef31a 3209527 a1ef31a 3209527 a1ef31a 79030b7 3209527 3c32de9 3209527 a1ef31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import streamlit as st
import pandas as pd
import sqlite3
import os
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("Blah App")
st.write("Analyze datasets using natural language queries.")
def initialize_llm(model_choice):
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
return None
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
return None
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
llm = initialize_llm(model_choice)
def load_dataset_into_session():
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"], index=0, horizontal=True)
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
if st.button("Load Dataset"):
try:
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
st.session_state.df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
st.session_state.df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(st.session_state.df.head(10))
if "df" not in st.session_state:
st.session_state.df = None
load_dataset_into_session()
def initialize_database(df):
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "patent_data.db")
connection = sqlite3.connect(db_path)
df.to_sql("patents", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
return db, temp_dir
def create_sql_tools(db):
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the patent database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get schema and sample rows for given tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the patent database."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
return list_tables, tables_schema, execute_sql
def initialize_agents(llm, tools):
list_tables, tables_schema, execute_sql = tools
sql_agent = Agent(
role="Patent Data Analyst",
goal="Extract patent data using optimized SQL queries.",
backstory="Expert in optimized SQL for patent databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql],
)
analyst_agent = Agent(
role="Patent Data Analyst",
goal="Analyze the data and produce insights.",
backstory="Data analyst identifying trends.",
llm=llm,
)
writer_agent = Agent(
role="Patent Report Writer",
goal="Summarize patent insights into a report.",
backstory="Expert in clear, concise reporting.",
llm=llm,
)
return sql_agent, analyst_agent, writer_agent
def setup_crew(sql_agent, analyst_agent, writer_agent):
extract_task = Task(
description="Extract patents related to the query: {query}.",
expected_output="Patent data matching the query.",
agent=sql_agent,
)
analyze_task = Task(
description="Analyze the extracted patent data.",
expected_output="Analysis text summarizing findings.",
agent=analyst_agent,
context=[extract_task],
)
report_task = Task(
description="Summarize analysis into a report.",
expected_output="Markdown report of insights.",
agent=writer_agent,
context=[analyze_task],
)
return Crew(
agents=[sql_agent, analyst_agent, writer_agent],
tasks=[extract_task, analyze_task, report_task],
process=Process.sequential,
verbose=True,
)
if st.session_state.df is not None:
db, temp_dir = initialize_database(st.session_state.df)
tools = create_sql_tools(db)
sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools)
crew = setup_crew(sql_agent, analyst_agent, writer_agent)
query = st.text_area("Enter Patent Analysis Query:", value="How many patents related to Machine Learning were filed after 2016?")
if st.button("Submit Query"):
if query.strip():
with st.spinner("Processing your query..."):
result = crew.kickoff(inputs={"query": query})
st.markdown("### π Patent Analysis Report")
st.markdown(result)
else:
st.warning("Please enter a valid query.")
else:
st.info("Please load a patent dataset to proceed.")
|