import streamlit as st import pandas as pd import sqlite3 import os from crewai import Agent, Crew, Process, Task from crewai.tools import tool from langchain_groq import ChatGroq from langchain_openai import ChatOpenAI from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile st.title("Blah App") st.write("Analyze datasets using natural language queries.") def initialize_llm(model_choice): groq_api_key = os.getenv("GROQ_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY") if model_choice == "llama-3.3-70b": if not groq_api_key: st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") return None return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") elif model_choice == "GPT-4o": if not openai_api_key: st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") return None return ChatOpenAI(api_key=openai_api_key, model="gpt-4o") model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) llm = initialize_llm(model_choice) def load_dataset_into_session(): input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"], index=0, horizontal=True) if input_option == "Use Hugging Face Dataset": dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") if st.button("Load Dataset"): try: dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) st.session_state.df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") st.dataframe(st.session_state.df.head(10)) except Exception as e: st.error(f"Error: {e}") elif input_option == "Upload CSV File": uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) if uploaded_file: st.session_state.df = pd.read_csv(uploaded_file) st.success("File uploaded successfully!") st.dataframe(st.session_state.df.head(10)) if "df" not in st.session_state: st.session_state.df = None load_dataset_into_session() def initialize_database(df): temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "patent_data.db") connection = sqlite3.connect(db_path) df.to_sql("patents", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") return db, temp_dir def create_sql_tools(db): @tool("list_tables") def list_tables() -> str: """List all tables in the patent database.""" return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: """Get schema and sample rows for given tables.""" return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: """Execute a SQL query against the patent database.""" return QuerySQLDataBaseTool(db=db).invoke(sql_query) return list_tables, tables_schema, execute_sql def initialize_agents(llm, tools): list_tables, tables_schema, execute_sql = tools sql_agent = Agent( role="Patent Data Analyst", goal="Extract patent data using optimized SQL queries.", backstory="Expert in optimized SQL for patent databases.", llm=llm, tools=[list_tables, tables_schema, execute_sql], ) analyst_agent = Agent( role="Patent Data Analyst", goal="Analyze the data and produce insights.", backstory="Data analyst identifying trends.", llm=llm, ) writer_agent = Agent( role="Patent Report Writer", goal="Summarize patent insights into a report.", backstory="Expert in clear, concise reporting.", llm=llm, ) return sql_agent, analyst_agent, writer_agent def setup_crew(sql_agent, analyst_agent, writer_agent): extract_task = Task( description="Extract patents related to the query: {query}.", expected_output="Patent data matching the query.", agent=sql_agent, ) analyze_task = Task( description="Analyze the extracted patent data.", expected_output="Analysis text summarizing findings.", agent=analyst_agent, context=[extract_task], ) report_task = Task( description="Summarize analysis into a report.", expected_output="Markdown report of insights.", agent=writer_agent, context=[analyze_task], ) return Crew( agents=[sql_agent, analyst_agent, writer_agent], tasks=[extract_task, analyze_task, report_task], process=Process.sequential, verbose=True, ) if st.session_state.df is not None: db, temp_dir = initialize_database(st.session_state.df) tools = create_sql_tools(db) sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools) crew = setup_crew(sql_agent, analyst_agent, writer_agent) query = st.text_area("Enter Patent Analysis Query:", value="How many patents related to Machine Learning were filed after 2016?") if st.button("Submit Query"): if query.strip(): with st.spinner("Processing your query..."): result = crew.kickoff(inputs={"query": query}) st.markdown("### 📊 Patent Analysis Report") st.markdown(result) else: st.warning("Please enter a valid query.") else: st.info("Please load a patent dataset to proceed.")