File size: 5,693 Bytes
4ae7ed4
 
2ac9a74
4ae7ed4
 
2ac9a74
4ae7ed4
2ac9a74
 
4ae7ed4
2ac9a74
4ae7ed4
2ac9a74
 
 
 
 
 
 
77389d5
4ae7ed4
 
5cc7611
4ae7ed4
 
7752a10
4ae7ed4
 
 
 
 
 
 
 
 
 
 
 
 
5cc7611
4ae7ed4
 
 
 
 
 
5cc7611
9abae49
7752a10
9bd334d
5cc7611
7752a10
9abae49
7752a10
 
 
 
 
5cc7611
7752a10
 
 
 
 
5cc7611
7752a10
 
 
9abae49
 
 
9bd334d
7752a10
9abae49
9bd334d
 
 
7752a10
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
5cc7611
 
 
9bd334d
 
 
 
 
5cc7611
 
 
9bd334d
 
 
 
5cc7611
 
 
9bd334d
 
 
 
 
5cc7611
 
9bd334d
 
 
 
5cc7611
 
9bd334d
 
 
 
 
5cc7611
 
9bd334d
 
 
 
 
 
 
 
2b71376
9bd334d
 
5cc7611
7752a10
5cc7611
9bd334d
 
 
 
 
 
 
5cc7611
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

# API Key
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# LLM Callback Logger
class LLMCallbackHandler(BaseCallbackHandler):
    def __init__(self, log_path: Path):
        self.log_path = log_path

    def on_llm_start(self, serialized, prompts, **kwargs):
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")

    def on_llm_end(self, response: LLMResult, **kwargs):
        generation = response.generations[-1][-1].message.content
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")

# Initialize LLM
llm = ChatGroq(
    temperature=0,
    model_name="mixtral-8x7b-32768",
    callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)

# Streamlit UI
st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")

# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
df = None

if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                df = pd.DataFrame(dataset)
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(df.head())
        except Exception as e:
            st.error(f"Error: {e}")
else:
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
        st.success("File uploaded successfully!")
        st.dataframe(df.head())

# SQL-RAG Analysis
if df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """Get schema and sample rows for given tables."""
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """Execute a SQL query against the database."""
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """Check the validity of a SQL query."""
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    # Agents
    sql_dev = Agent(
        role="Senior Database Developer",
        goal="Extract data using optimized SQL queries.",
        backstory="An expert in writing optimized SQL queries for complex databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    data_analyst = Agent(
        role="Senior Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="A seasoned analyst who identifies trends and patterns in datasets.",
        llm=llm,
    )

    report_writer = Agent(
        role="Technical Report Writer",
        goal="Summarize the insights into a clear report.",
        backstory="An expert in summarizing data insights into readable reports.",
        llm=llm,
    )

    # Tasks
    extract_data = Task(
        description="Extract data based on the query: {query}.",
        expected_output="Database results matching the query.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the extracted data for query: {query}.",
        expected_output="Analysis text summarizing findings.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Summarize the analysis into an executive report.",
        expected_output="Markdown report of insights.",
        agent=report_writer,
        context=[analyze_data],
    )

    crew = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=True,
    )

    query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'")
    if st.button("Submit Query"):
        with st.spinner("Processing query..."):
            inputs = {"query": query}
            result = crew.kickoff(inputs=inputs)
            st.markdown("### Analysis Report:")
            st.markdown(result)

    temp_dir.cleanup()
else:
    st.info("Please load a dataset to proceed.")