Spaces:
Sleeping
Sleeping
File size: 9,683 Bytes
4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 2bfda0e 4ae7ed4 2ac9a74 6548944 4ae7ed4 f12166f 2ac9a74 77389d5 4ae7ed4 e003b30 4ae7ed4 e1b05e1 e003b30 4ae7ed4 e003b30 4ae7ed4 e003b30 4ae7ed4 e003b30 9bd334d e1b05e1 592efed e1b05e1 5cc7611 7752a10 b62fcd0 7752a10 5cc7611 7752a10 e1b05e1 592efed 7752a10 5cc7611 b62fcd0 e1b05e1 7752a10 469ba8d b62fcd0 592efed b62fcd0 592efed b62fcd0 7752a10 e1b05e1 9bd334d e1b05e1 9bd334d 5cc7611 9bd334d cbd7b69 9bd334d cbd7b69 9bd334d cbd7b69 9bd334d 5cc7611 9bd334d 5cc7611 9bd334d 5cc7611 9bd334d 5cc7611 9bd334d 5cc7611 9bd334d 5cc7611 9bd334d 2b71376 9bd334d 333c72e cbd7b69 333c72e cbd7b69 39a319b b0659f7 7a5d55f b0659f7 10f3dc1 2dbbcbf 10f3dc1 2dbbcbf 7a5d55f 2dbbcbf 7a5d55f 2dbbcbf 10f3dc1 2dbbcbf 7a5d55f 10f3dc1 2dbbcbf 10f3dc1 2dbbcbf b0659f7 10f3dc1 2dbbcbf b0659f7 10f3dc1 b0659f7 7a5d55f b0659f7 751c05a cbd7b69 b0659f7 cbd7b69 b0659f7 cbd7b69 6925732 751c05a cbd7b69 39e581e 6925732 39e581e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("SQL-RAG Using CrewAI π")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Initialize session state for data persistence
if "df" not in st.session_state:
st.session_state.df = None
if "show_preview" not in st.session_state:
st.session_state.show_preview = False
# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
st.session_state.df = pd.DataFrame(dataset)
st.session_state.show_preview = True # Show preview after loading
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.session_state.show_preview = True # Show preview after loading
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error loading file: {e}")
# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
st.subheader("π Dataset Preview")
st.dataframe(st.session_state.df.head())
# SQL-RAG Analysis
if st.session_state.df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get the schema and sample rows for the specified tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the database and return the results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Validate the SQL query syntax and structure before execution."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
sql_dev = Agent(
role="Senior Database Developer",
goal="Extract data using optimized SQL queries.",
backstory="An expert in writing optimized SQL queries for complex databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data and produce insights.",
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
llm=llm,
)
report_writer = Agent(
role="Technical Report Writer",
goal="Summarize the insights into a clear report.",
backstory="An expert in summarizing data insights into readable reports.",
llm=llm,
)
extract_data = Task(
description="Extract data based on the query: {query}.",
expected_output="Database results matching the query.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the extracted data for query: {query}.",
expected_output="Analysis text summarizing findings.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into an executive report.",
expected_output="Markdown report of insights.",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=True,
)
# Tabs for Query Results and General Insights
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
# Tab 1: Query-Insights + Visualization
with tab1:
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
if st.button("Submit Query"):
with st.spinner("Processing query..."):
inputs = {"query": query}
result = crew.kickoff(inputs=inputs)
st.markdown("### Analysis Report:")
# Generate relevant visualizations
visualizations = []
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
title="Salary Distribution by Job Title")
visualizations.append(fig_salary)
fig_experience = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
visualizations.append(fig_experience)
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
visualizations.append(fig_employment)
# Split the result and insert visualizations before Conclusion
insert_section = "## Conclusion"
if insert_section in result:
parts = result.split(insert_section, 1)
st.markdown(parts[0]) # Before Conclusion
# Insert Visual Insights Section before Conclusion
st.markdown("## π Visual Insights")
for fig in visualizations:
st.plotly_chart(fig, use_container_width=True)
# Show Conclusion
st.markdown(insert_section + parts[1])
else:
# Default if Conclusion not found
st.markdown(result)
st.markdown("## π Visual Insights")
for fig in visualizations:
st.plotly_chart(fig, use_container_width=True)
# Tab 2: Full Data Visualization
with tab2:
st.subheader("π Comprehensive Data Visualizations")
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
st.plotly_chart(fig1)
fig2 = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
st.plotly_chart(fig2)
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
st.plotly_chart(fig3)
if "company_size" in st.session_state.df.columns:
fig4 = px.box(st.session_state.df, x="company_size", y="salary_in_usd",
title="Salary Distribution by Company Size")
st.plotly_chart(fig4)
if "region" in st.session_state.df.columns:
fig5 = px.box(st.session_state.df, x="region", y="salary_in_usd",
title="Salary Distribution by Region")
st.plotly_chart(fig5)
temp_dir.cleanup()
else:
st.info("Please load a dataset to proceed.")
# Sidebar Reference
with st.sidebar:
st.header("π Reference:")
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|