File size: 7,076 Bytes
4ae7ed4
 
2ac9a74
4ae7ed4
 
2ac9a74
2bfda0e
4ae7ed4
2ac9a74
6548944
4ae7ed4
f12166f
2ac9a74
 
 
 
 
 
 
 
77389d5
4ae7ed4
 
e003b30
 
4ae7ed4
e1b05e1
e003b30
4ae7ed4
e003b30
 
4ae7ed4
e003b30
 
 
4ae7ed4
e003b30
 
 
 
 
 
 
 
 
 
 
 
9bd334d
e1b05e1
 
 
 
5cc7611
7752a10
b62fcd0
7752a10
 
 
 
5cc7611
7752a10
e1b05e1
7752a10
 
5cc7611
b62fcd0
e1b05e1
7752a10
469ba8d
b62fcd0
 
 
 
 
 
 
 
 
 
 
e32e6f3
7752a10
e1b05e1
9bd334d
 
 
e1b05e1
9bd334d
 
 
 
5cc7611
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
 
cbd7b69
9bd334d
 
 
5cc7611
 
 
9bd334d
 
 
 
 
5cc7611
 
 
9bd334d
 
 
 
5cc7611
 
 
9bd334d
 
 
 
5cc7611
 
9bd334d
 
 
 
5cc7611
 
9bd334d
 
 
 
 
5cc7611
 
9bd334d
 
 
 
 
 
 
 
2b71376
9bd334d
 
cbd7b69
 
 
 
39a319b
cbd7b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f696ec
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")

# Initialize LLM
llm = None

# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)

# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")

if model_choice == "llama-3.3-70b":
    if not groq_api_key:
        st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
    if not openai_api_key:
        st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
        llm = None
    else:
        llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")

# Initialize session state for data persistence
if "df" not in st.session_state:
    st.session_state.df = None

# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])

if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                st.session_state.df = pd.DataFrame(dataset)
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
        except Exception as e:
            st.error(f"Error: {e}")

elif input_option == "Upload CSV File":
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        try:
            st.session_state.df = pd.read_csv(uploaded_file)
            st.success("File uploaded successfully!")
        except Exception as e:
            st.error(f"Error loading file: {e}")

# Display Dataset Preview 
if st.session_state.df is not None:
    st.subheader("πŸ“‚ Dataset Preview")
    st.dataframe(st.session_state.df.head())


# SQL-RAG Analysis
if st.session_state.df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """Get the schema and sample rows for the specified tables."""
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """Execute a SQL query against the database and return the results."""
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """Validate the SQL query syntax and structure before execution."""
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    sql_dev = Agent(
        role="Senior Database Developer",
        goal="Extract data using optimized SQL queries.",
        backstory="An expert in writing optimized SQL queries for complex databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    data_analyst = Agent(
        role="Senior Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="A seasoned analyst who identifies trends and patterns in datasets.",
        llm=llm,
    )

    report_writer = Agent(
        role="Technical Report Writer",
        goal="Summarize the insights into a clear report.",
        backstory="An expert in summarizing data insights into readable reports.",
        llm=llm,
    )

    extract_data = Task(
        description="Extract data based on the query: {query}.",
        expected_output="Database results matching the query.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the extracted data for query: {query}.",
        expected_output="Analysis text summarizing findings.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Summarize the analysis into an executive report.",
        expected_output="Markdown report of insights.",
        agent=report_writer,
        context=[analyze_data],
    )

    crew = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=True,
    )

    # UI: Tabs for Query Results and General Insights
    tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])

    with tab1:
        query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
        if st.button("Submit Query"):
            with st.spinner("Processing query..."):
                inputs = {"query": query}
                result = crew.kickoff(inputs=inputs)
                st.markdown("### Analysis Report:")
                st.markdown(result)

                # Query-Specific Visualization
                if "salary" in query.lower():
                    fig = px.box(st.session_state.df, x="job_title", y="salary_in_usd", title="Salary Distribution by Job Title")
                    st.plotly_chart(fig)

    with tab2:
        st.subheader("πŸ“Š Comprehensive Data Visualizations")
        
        fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
        st.plotly_chart(fig1)

        fig2 = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
                      x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
        st.plotly_chart(fig2)

    temp_dir.cleanup()
else:
    st.info("Please load a dataset to proceed.")

with st.sidebar:
    st.header("πŸ“š Reference:")
    st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")