Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import sqlite3 | |
import os | |
import json | |
from pathlib import Path | |
from datetime import datetime, timezone | |
from crewai import Agent, Crew, Process, Task | |
from crewai_tools import tool | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_groq import ChatGroq | |
from langchain.schema.output import LLMResult | |
from langchain_core.callbacks.base import BaseCallbackHandler | |
from langchain_community.tools.sql_database.tool import ( | |
InfoSQLDatabaseTool, | |
ListSQLDatabaseTool, | |
QuerySQLCheckerTool, | |
QuerySQLDataBaseTool, | |
) | |
from langchain_community.utilities.sql_database import SQLDatabase | |
from datasets import load_dataset | |
import tempfile | |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
class Event: | |
def __init__(self, event, text): | |
self.event = event | |
self.timestamp = datetime.now(timezone.utc).isoformat() | |
self.text = text | |
class LLMCallbackHandler(BaseCallbackHandler): | |
def __init__(self, log_path: Path): | |
self.log_path = log_path | |
def on_llm_start(self, serialized, prompts, **kwargs): | |
with self.log_path.open("a", encoding="utf-8") as file: | |
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") | |
def on_llm_end(self, response: LLMResult, **kwargs): | |
generation = response.generations[-1][-1].message.content | |
with self.log_path.open("a", encoding="utf-8") as file: | |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") | |
llm = ChatGroq( | |
temperature=0, | |
model_name="mixtral-8x7b-32768", | |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], | |
) | |
st.title("SQL-RAG using CrewAI π") | |
st.write("Analyze and summarize Hugging Face datasets using natural language queries with SQL-based retrieval.") | |
default_dataset = "datascience/ds-salaries" | |
st.text("Example dataset: `datascience/ds-salaries` (You can enter your own dataset name)") | |
dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset) | |
if dataset_name: | |
with st.spinner("Loading dataset..."): | |
try: | |
dataset = load_dataset(dataset_name, split="train") | |
df = pd.DataFrame(dataset) | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
st.write("Preview of the dataset:") | |
st.dataframe(df.head()) | |
temp_dir = tempfile.TemporaryDirectory() | |
db_path = os.path.join(temp_dir.name, "data.db") | |
connection = sqlite3.connect(db_path) | |
df.to_sql("data_table", connection, if_exists="replace", index=False) | |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
def list_tables() -> str: | |
return ListSQLDatabaseTool(db=db).invoke("") | |
def tables_schema(tables: str) -> str: | |
return InfoSQLDatabaseTool(db=db).invoke(tables) | |
def execute_sql(sql_query: str) -> str: | |
return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
def check_sql(sql_query: str) -> str: | |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) | |
sql_dev = Agent( | |
role="Database Developer", | |
goal="Extract data from the database.", | |
llm=llm, | |
tools=[list_tables, tables_schema, execute_sql, check_sql], | |
allow_delegation=False, | |
) | |
data_analyst = Agent( | |
role="Data Analyst", | |
goal="Analyze and provide insights.", | |
llm=llm, | |
allow_delegation=False, | |
) | |
report_writer = Agent( | |
role="Report Editor", | |
goal="Summarize the analysis.", | |
llm=llm, | |
allow_delegation=False, | |
) | |
extract_data = Task( | |
description="Extract data required for the query: {query}.", | |
expected_output="Database result for the query", | |
agent=sql_dev, | |
) | |
analyze_data = Task( | |
description="Analyze the data for: {query}.", | |
expected_output="Detailed analysis text", | |
agent=data_analyst, | |
context=[extract_data], | |
) | |
write_report = Task( | |
description="Summarize the analysis into a short report.", | |
expected_output="Markdown report", | |
agent=report_writer, | |
context=[analyze_data], | |
) | |
crew = Crew( | |
agents=[sql_dev, data_analyst, report_writer], | |
tasks=[extract_data, analyze_data, write_report], | |
process=Process.sequential, | |
verbose=2, | |
memory=False, | |
) | |
query = st.text_input("Enter your query:", placeholder="e.g., 'How does salary vary by company size?'") | |
if query: | |
with st.spinner("Processing your query..."): | |
inputs = {"query": query} | |
result = crew.kickoff(inputs=inputs) | |
st.markdown("### Analysis Report:") | |
st.markdown(result) | |
temp_dir.cleanup() | |
except Exception as e: | |
st.error(f"Error loading dataset: {e}") | |