subtest / mylab /single_viz_gpt4o.py
DrishtiSharma's picture
Create single_viz_gpt4o.py
8ecac18 verified
import streamlit as st
import pandas as pd
import sqlite3
import tempfile
from fpdf import FPDF
import os
import re
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Initialize session state for data persistence
if "df" not in st.session_state:
st.session_state.df = None
if "show_preview" not in st.session_state:
st.session_state.show_preview = False
# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
st.session_state.df = pd.DataFrame(dataset)
st.session_state.show_preview = True # Show preview after loading
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.session_state.show_preview = True # Show preview after loading
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error loading file: {e}")
# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
st.subheader("πŸ“‚ Dataset Preview")
st.dataframe(st.session_state.df.head())
"""# Ask GPT-4o for Visualization Suggestions
def ask_gpt4o_for_visualization(query, df, llm):
columns = ', '.join(df.columns)
prompt = f"""
Analyze the query and suggest the best visualization.
Query: "{query}"
Available Columns: {columns}
Respond in this JSON format:
{{
"chart_type": "bar/box/line/scatter",
"x_axis": "column_name",
"y_axis": "column_name",
"group_by": "optional_column_name"
}}
"""
response = llm.generate(prompt)
try:
return json.loads(response)
except json.JSONDecodeError:
st.error("⚠️ GPT-4o failed to generate a valid suggestion.")
return None"""
def add_stats_to_figure(fig, df, y_axis, chart_type):
"""
Add relevant statistical annotations to the visualization
based on the chart type.
"""
# Check if the y-axis column is numeric
if not pd.api.types.is_numeric_dtype(df[y_axis]):
st.warning(f"⚠️ Cannot compute statistics for non-numeric column: {y_axis}")
return fig
# Compute statistics for numeric data
min_val = df[y_axis].min()
max_val = df[y_axis].max()
avg_val = df[y_axis].mean()
median_val = df[y_axis].median()
std_dev_val = df[y_axis].std()
# Format the stats for display
stats_text = (
f"πŸ“Š **Statistics**\n\n"
f"- **Min:** ${min_val:,.2f}\n"
f"- **Max:** ${max_val:,.2f}\n"
f"- **Average:** ${avg_val:,.2f}\n"
f"- **Median:** ${median_val:,.2f}\n"
f"- **Std Dev:** ${std_dev_val:,.2f}"
)
# Apply stats only to relevant chart types
if chart_type in ["bar", "line"]:
# Add annotation box for bar and line charts
fig.add_annotation(
text=stats_text,
xref="paper", yref="paper",
x=1.02, y=1,
showarrow=False,
align="left",
font=dict(size=12, color="black"),
bordercolor="gray",
borderwidth=1,
bgcolor="rgba(255, 255, 255, 0.85)"
)
# Add horizontal reference lines
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right")
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right")
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right")
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right")
elif chart_type == "scatter":
# Add stats annotation only, no lines for scatter plots
fig.add_annotation(
text=stats_text,
xref="paper", yref="paper",
x=1.02, y=1,
showarrow=False,
align="left",
font=dict(size=12, color="black"),
bordercolor="gray",
borderwidth=1,
bgcolor="rgba(255, 255, 255, 0.85)"
)
elif chart_type == "box":
# Box plots inherently show distribution; no extra stats needed
pass
elif chart_type == "pie":
# Pie charts represent proportions, not suitable for stats
st.info("πŸ“Š Pie charts represent proportions. Additional stats are not applicable.")
elif chart_type == "heatmap":
# Heatmaps already reflect data intensity
st.info("πŸ“Š Heatmaps inherently reflect distribution. No additional stats added.")
else:
st.warning(f"⚠️ No statistical overlays applied for unsupported chart type: '{chart_type}'.")
return fig
# Dynamically generate Plotly visualizations based on GPT-4o suggestions
def generate_visualization(suggestion, df):
chart_type = suggestion.get("chart_type", "bar").lower()
x_axis = suggestion.get("x_axis")
y_axis = suggestion.get("y_axis")
group_by = suggestion.get("group_by")
# Dynamically determine the best Y-axis if GPT-4o doesn't suggest one
if not y_axis:
numeric_columns = df.select_dtypes(include='number').columns.tolist()
if x_axis in numeric_columns:
# Avoid using the same column for both axes
numeric_columns.remove(x_axis)
# Prioritize the first available numeric column for y-axis
y_axis = numeric_columns[0] if numeric_columns else None
# Ensure both axes are identified
if not x_axis or not y_axis:
st.warning("⚠️ Unable to determine relevant columns for visualization.")
return None
# Dynamically select the Plotly function
plotly_function = getattr(px, chart_type, None)
if not plotly_function:
st.warning(f"⚠️ Unsupported chart type '{chart_type}' suggested by GPT-4o.")
return None
# Prepare dynamic plot arguments
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis}
if group_by and group_by in df.columns:
plot_args["color"] = group_by
try:
# Generate the dynamic visualization
fig = plotly_function(**plot_args)
fig.update_layout(
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}",
xaxis_title=x_axis.replace('_', ' ').title(),
yaxis_title=y_axis.replace('_', ' ').title(),
)
# Apply statistics intelligently
fig = add_stats_to_figure(fig, df, y_axis, chart_type)
return fig
except Exception as e:
st.error(f"⚠️ Failed to generate visualization: {e}")
return None
# Function to create TXT file
def create_text_report_with_viz_temp(report, conclusion, visualizations):
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
for i, fig in enumerate(visualizations, start=1):
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
content += f"\n{i}. {fig_title}\n"
content += f" - X-axis: {x_axis}\n"
content += f" - Y-axis: {y_axis}\n"
if fig.data:
trace_types = set(trace.type for trace in fig.data)
content += f" - Chart Type(s): {', '.join(trace_types)}\n"
else:
content += " - No data available in this visualization.\n"
content += f"\n\n\n{conclusion}"
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
temp_txt.write(content)
return temp_txt.name
# Function to create PDF with report text and visualizations
def create_pdf_report_with_viz(report, conclusion, visualizations):
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Arial", size=12)
# Title
pdf.set_font("Arial", style="B", size=18)
pdf.cell(0, 10, "πŸ“Š Analysis Report", ln=True, align="C")
pdf.ln(10)
# Report Content
pdf.set_font("Arial", style="B", size=14)
pdf.cell(0, 10, "Analysis", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, report)
pdf.ln(10)
pdf.set_font("Arial", style="B", size=14)
pdf.cell(0, 10, "Conclusion", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, conclusion)
# Add Visualizations
pdf.add_page()
pdf.set_font("Arial", style="B", size=16)
pdf.cell(0, 10, "πŸ“ˆ Visualizations", ln=True)
pdf.ln(5)
with tempfile.TemporaryDirectory() as temp_dir:
for i, fig in enumerate(visualizations, start=1):
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
# Save each visualization as a PNG image
img_path = os.path.join(temp_dir, f"viz_{i}.png")
fig.write_image(img_path)
# Insert Title and Description
pdf.set_font("Arial", style="B", size=14)
pdf.multi_cell(0, 10, f"{i}. {fig_title}")
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
pdf.ln(3)
# Embed Visualization
pdf.image(img_path, w=170)
pdf.ln(10)
# Save PDF
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf
def escape_markdown(text):
# Ensure text is a string
text = str(text)
# Escape Markdown characters: *, _, `, ~
escape_chars = r"(\*|_|`|~)"
return re.sub(escape_chars, r"\\\1", text)
# SQL-RAG Analysis
if st.session_state.df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get the schema and sample rows for the specified tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the database and return the results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Validate the SQL query syntax and structure before execution."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents for SQL data extraction and analysis
sql_dev = Agent(
role="Senior Database Developer",
goal="Extract data using optimized SQL queries.",
backstory="An expert in writing optimized SQL queries for complex databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data and produce insights.",
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
llm=llm,
)
report_writer = Agent(
role="Technical Report Writer",
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
backstory="Specializes in detailed analytical reports without conclusions.",
llm=llm,
)
conclusion_writer = Agent(
role="Conclusion Specialist",
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
backstory="An expert in crafting impactful and clear conclusions.",
llm=llm,
)
# Define tasks for report and conclusion
extract_data = Task(
description="Extract data based on the query: {query}.",
expected_output="Database results matching the query.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the extracted data for query: {query}.",
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
expected_output="Markdown-formatted report excluding Conclusion.",
agent=report_writer,
context=[analyze_data],
)
write_conclusion = Task(
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
agent=conclusion_writer,
context=[analyze_data],
)
# Separate Crews for report and conclusion
crew_report = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=True,
)
crew_conclusion = Crew(
agents=[data_analyst, conclusion_writer],
tasks=[write_conclusion],
process=Process.sequential,
verbose=True,
)
# Tabs for Query Results and Visualizations
tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
# Query Insights + Visualization
with tab1:
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
if st.button("Submit Query"):
with st.spinner("Processing query..."):
# Step 1: Generate the analysis report
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
report_result = crew_report.kickoff(inputs=report_inputs)
# Step 2: Generate only the concise conclusion
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
# Step 3: Display the report
#st.markdown("### Analysis Report:")
st.markdown(report_result if report_result else "⚠️ No Report Generated.")
# Step 4: Generate Visualizations
# Step 5: Insert Visual Insights
st.markdown("### Visual Insights")
# Step 6: Display Concise Conclusion
#st.markdown("#### Conclusion")
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "⚠️ No Conclusion Generated.")
st.markdown(safe_conclusion)
# Full Data Visualization Tab
with tab2:
st.subheader("πŸ“Š Comprehensive Data Visualizations")
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
st.plotly_chart(fig1)
fig2 = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
st.plotly_chart(fig2)
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
st.plotly_chart(fig3)
temp_dir.cleanup()
else:
st.info("Please load a dataset to proceed.")
# Sidebar Reference
with st.sidebar:
st.header("πŸ“š Reference:")
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")