Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Create qt.py
Browse files
qt.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import sqlite3
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import plotly.express as px
|
8 |
+
from datetime import datetime, timezone
|
9 |
+
from crewai import Agent, Crew, Process, Task
|
10 |
+
from crewai.tools import tool
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from langchain.schema.output import LLMResult
|
14 |
+
from langchain_community.tools.sql_database.tool import (
|
15 |
+
InfoSQLDatabaseTool,
|
16 |
+
ListSQLDatabaseTool,
|
17 |
+
QuerySQLCheckerTool,
|
18 |
+
QuerySQLDataBaseTool,
|
19 |
+
)
|
20 |
+
from langchain_community.utilities.sql_database import SQLDatabase
|
21 |
+
from datasets import load_dataset
|
22 |
+
import tempfile
|
23 |
+
|
24 |
+
st.title("SQL-RAG Using CrewAI π")
|
25 |
+
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
26 |
+
|
27 |
+
# Initialize LLM
|
28 |
+
llm = None
|
29 |
+
|
30 |
+
# Model Selection
|
31 |
+
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
|
32 |
+
|
33 |
+
# API Key Validation and LLM Initialization
|
34 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
35 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
36 |
+
|
37 |
+
if model_choice == "llama-3.3-70b":
|
38 |
+
if not groq_api_key:
|
39 |
+
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
|
40 |
+
llm = None
|
41 |
+
else:
|
42 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
|
43 |
+
elif model_choice == "GPT-4o":
|
44 |
+
if not openai_api_key:
|
45 |
+
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
|
46 |
+
llm = None
|
47 |
+
else:
|
48 |
+
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
|
49 |
+
|
50 |
+
# Initialize session state for data persistence
|
51 |
+
if "df" not in st.session_state:
|
52 |
+
st.session_state.df = None
|
53 |
+
if "show_preview" not in st.session_state:
|
54 |
+
st.session_state.show_preview = False
|
55 |
+
|
56 |
+
# Dataset Input
|
57 |
+
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
58 |
+
|
59 |
+
if input_option == "Use Hugging Face Dataset":
|
60 |
+
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
61 |
+
if st.button("Load Dataset"):
|
62 |
+
try:
|
63 |
+
with st.spinner("Loading dataset..."):
|
64 |
+
dataset = load_dataset(dataset_name, split="train")
|
65 |
+
st.session_state.df = pd.DataFrame(dataset)
|
66 |
+
st.session_state.show_preview = True # Show preview after loading
|
67 |
+
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error: {e}")
|
70 |
+
|
71 |
+
elif input_option == "Upload CSV File":
|
72 |
+
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
73 |
+
if uploaded_file:
|
74 |
+
try:
|
75 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
76 |
+
st.session_state.show_preview = True # Show preview after loading
|
77 |
+
st.success("File uploaded successfully!")
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error loading file: {e}")
|
80 |
+
|
81 |
+
# Show Dataset Preview Only After Loading
|
82 |
+
if st.session_state.df is not None and st.session_state.show_preview:
|
83 |
+
st.subheader("π Dataset Preview")
|
84 |
+
st.dataframe(st.session_state.df.head())
|
85 |
+
|
86 |
+
# SQL-RAG Analysis
|
87 |
+
if st.session_state.df is not None:
|
88 |
+
temp_dir = tempfile.TemporaryDirectory()
|
89 |
+
db_path = os.path.join(temp_dir.name, "data.db")
|
90 |
+
connection = sqlite3.connect(db_path)
|
91 |
+
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
|
92 |
+
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
93 |
+
|
94 |
+
@tool("list_tables")
|
95 |
+
def list_tables() -> str:
|
96 |
+
"""List all tables in the database."""
|
97 |
+
return ListSQLDatabaseTool(db=db).invoke("")
|
98 |
+
|
99 |
+
@tool("tables_schema")
|
100 |
+
def tables_schema(tables: str) -> str:
|
101 |
+
"""Get the schema and sample rows for the specified tables."""
|
102 |
+
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
103 |
+
|
104 |
+
@tool("execute_sql")
|
105 |
+
def execute_sql(sql_query: str) -> str:
|
106 |
+
"""Execute a SQL query against the database and return the results."""
|
107 |
+
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
108 |
+
|
109 |
+
@tool("check_sql")
|
110 |
+
def check_sql(sql_query: str) -> str:
|
111 |
+
"""Validate the SQL query syntax and structure before execution."""
|
112 |
+
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
113 |
+
|
114 |
+
sql_dev = Agent(
|
115 |
+
role="Senior Database Developer",
|
116 |
+
goal="Extract data using optimized SQL queries.",
|
117 |
+
backstory="An expert in writing optimized SQL queries for complex databases.",
|
118 |
+
llm=llm,
|
119 |
+
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
120 |
+
)
|
121 |
+
|
122 |
+
data_analyst = Agent(
|
123 |
+
role="Senior Data Analyst",
|
124 |
+
goal="Analyze the data and produce insights.",
|
125 |
+
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
|
126 |
+
llm=llm,
|
127 |
+
)
|
128 |
+
|
129 |
+
report_writer = Agent(
|
130 |
+
role="Technical Report Writer",
|
131 |
+
goal="Summarize the insights into a clear report.",
|
132 |
+
backstory="An expert in summarizing data insights into readable reports.",
|
133 |
+
llm=llm,
|
134 |
+
)
|
135 |
+
|
136 |
+
extract_data = Task(
|
137 |
+
description="Extract data based on the query: {query}.",
|
138 |
+
expected_output="Database results matching the query.",
|
139 |
+
agent=sql_dev,
|
140 |
+
)
|
141 |
+
|
142 |
+
analyze_data = Task(
|
143 |
+
description="Analyze the extracted data for query: {query}.",
|
144 |
+
expected_output="Analysis text summarizing findings (without a Conclusion section).",
|
145 |
+
agent=data_analyst,
|
146 |
+
context=[extract_data],
|
147 |
+
)
|
148 |
+
|
149 |
+
write_report = Task(
|
150 |
+
description="Summarize the analysis into an executive report without a Conclusion.",
|
151 |
+
expected_output="Markdown report of insights without Conclusion.",
|
152 |
+
agent=report_writer,
|
153 |
+
context=[analyze_data],
|
154 |
+
)
|
155 |
+
|
156 |
+
crew = Crew(
|
157 |
+
agents=[sql_dev, data_analyst, report_writer],
|
158 |
+
tasks=[extract_data, analyze_data, write_report],
|
159 |
+
process=Process.sequential,
|
160 |
+
verbose=True,
|
161 |
+
)
|
162 |
+
|
163 |
+
# Tabs for Query Results and General Insights
|
164 |
+
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
|
165 |
+
|
166 |
+
# Tab 1: Query-Insights + Visualization
|
167 |
+
with tab1:
|
168 |
+
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
169 |
+
if st.button("Submit Query"):
|
170 |
+
with st.spinner("Processing query..."):
|
171 |
+
# Step 1: Generate Report without Conclusion
|
172 |
+
inputs = {"query": query + " Provide a detailed analysis but DO NOT include a Conclusion."}
|
173 |
+
report_result = crew.kickoff(inputs=inputs)
|
174 |
+
|
175 |
+
# Step 2: Generate only the Conclusion
|
176 |
+
conclusion_inputs = {"query": query + " Now, provide only the Conclusion for this analysis."}
|
177 |
+
conclusion_result = crew.kickoff(inputs=conclusion_inputs)
|
178 |
+
|
179 |
+
st.markdown("### Analysis Report:")
|
180 |
+
|
181 |
+
# Step 3: Generate relevant visualizations
|
182 |
+
visualizations = []
|
183 |
+
|
184 |
+
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
185 |
+
title="Salary Distribution by Job Title")
|
186 |
+
visualizations.append(fig_salary)
|
187 |
+
|
188 |
+
fig_experience = px.bar(
|
189 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
190 |
+
x="experience_level", y="salary_in_usd",
|
191 |
+
title="Average Salary by Experience Level"
|
192 |
+
)
|
193 |
+
visualizations.append(fig_experience)
|
194 |
+
|
195 |
+
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
196 |
+
title="Salary Distribution by Employment Type")
|
197 |
+
visualizations.append(fig_employment)
|
198 |
+
|
199 |
+
# Step 4: Display report without conclusion
|
200 |
+
st.markdown(report_result)
|
201 |
+
|
202 |
+
# Step 5: Insert Visual Insights
|
203 |
+
st.markdown("## π Visual Insights")
|
204 |
+
for fig in visualizations:
|
205 |
+
st.plotly_chart(fig, use_container_width=True)
|
206 |
+
|
207 |
+
# Step 6: Append the Conclusion
|
208 |
+
st.markdown("## Conclusion")
|
209 |
+
st.markdown(conclusion_result)
|
210 |
+
|
211 |
+
# Tab 2: Full Data Visualization
|
212 |
+
with tab2:
|
213 |
+
st.subheader("π Comprehensive Data Visualizations")
|
214 |
+
|
215 |
+
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
216 |
+
st.plotly_chart(fig1)
|
217 |
+
|
218 |
+
fig2 = px.bar(
|
219 |
+
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
220 |
+
x="experience_level", y="salary_in_usd",
|
221 |
+
title="Average Salary by Experience Level"
|
222 |
+
)
|
223 |
+
st.plotly_chart(fig2)
|
224 |
+
|
225 |
+
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
226 |
+
title="Salary Distribution by Employment Type")
|
227 |
+
st.plotly_chart(fig3)
|
228 |
+
|
229 |
+
temp_dir.cleanup()
|
230 |
+
else:
|
231 |
+
st.info("Please load a dataset to proceed.")
|
232 |
+
|
233 |
+
# Sidebar Reference
|
234 |
+
with st.sidebar:
|
235 |
+
st.header("π Reference:")
|
236 |
+
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|