import streamlit as st import pandas as pd import sqlite3 import os import json from pathlib import Path from datetime import datetime, timezone from crewai import Agent, Crew, Process, Task from crewai_tools import tool from langchain_core.prompts import ChatPromptTemplate from langchain_groq import ChatGroq from langchain.schema.output import LLMResult from langchain_core.callbacks.base import BaseCallbackHandler from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) from langchain_community.utilities.sql_database import SQLDatabase from datasets import load_dataset import tempfile os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") class Event: def __init__(self, event, text): self.event = event self.timestamp = datetime.now(timezone.utc).isoformat() self.text = text class LLMCallbackHandler(BaseCallbackHandler): def __init__(self, log_path: Path): self.log_path = log_path def on_llm_start(self, serialized, prompts, **kwargs): with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") def on_llm_end(self, response: LLMResult, **kwargs): generation = response.generations[-1][-1].message.content with self.log_path.open("a", encoding="utf-8") as file: file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") llm = ChatGroq( temperature=0, model_name="mixtral-8x7b-32768", callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], ) st.title("SQL-RAG using CrewAI 🚀") st.write("Analyze and summarize Hugging Face datasets using natural language queries with SQL-based retrieval.") default_dataset = "datascience/ds-salaries" st.text("Example dataset: `datascience/ds-salaries` (You can enter your own dataset name)") dataset_name = st.text_input("Enter Hugging Face dataset name:", value=default_dataset) if dataset_name: with st.spinner("Loading dataset..."): try: dataset = load_dataset(dataset_name, split="train") df = pd.DataFrame(dataset) st.success(f"Dataset '{dataset_name}' loaded successfully!") st.write("Preview of the dataset:") st.dataframe(df.head()) temp_dir = tempfile.TemporaryDirectory() db_path = os.path.join(temp_dir.name, "data.db") connection = sqlite3.connect(db_path) df.to_sql("data_table", connection, if_exists="replace", index=False) db = SQLDatabase.from_uri(f"sqlite:///{db_path}") @tool("list_tables") def list_tables() -> str: return ListSQLDatabaseTool(db=db).invoke("") @tool("tables_schema") def tables_schema(tables: str) -> str: return InfoSQLDatabaseTool(db=db).invoke(tables) @tool("execute_sql") def execute_sql(sql_query: str) -> str: return QuerySQLDataBaseTool(db=db).invoke(sql_query) @tool("check_sql") def check_sql(sql_query: str) -> str: return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query}) sql_dev = Agent( role="Database Developer", goal="Extract data from the database.", llm=llm, tools=[list_tables, tables_schema, execute_sql, check_sql], allow_delegation=False, ) data_analyst = Agent( role="Data Analyst", goal="Analyze and provide insights.", llm=llm, allow_delegation=False, ) report_writer = Agent( role="Report Editor", goal="Summarize the analysis.", llm=llm, allow_delegation=False, ) extract_data = Task( description="Extract data required for the query: {query}.", expected_output="Database result for the query", agent=sql_dev, ) analyze_data = Task( description="Analyze the data for: {query}.", expected_output="Detailed analysis text", agent=data_analyst, context=[extract_data], ) write_report = Task( description="Summarize the analysis into a short report.", expected_output="Markdown report", agent=report_writer, context=[analyze_data], ) crew = Crew( agents=[sql_dev, data_analyst, report_writer], tasks=[extract_data, analyze_data, write_report], process=Process.sequential, verbose=2, memory=False, ) query = st.text_input("Enter your query:", placeholder="e.g., 'How does salary vary by company size?'") if query: with st.spinner("Processing your query..."): inputs = {"query": query} result = crew.kickoff(inputs=inputs) st.markdown("### Analysis Report:") st.markdown(result) temp_dir.cleanup() except Exception as e: st.error(f"Error loading dataset: {e}")