mpatel57 commited on
Commit
954f9a3
·
verified ·
1 Parent(s): e22ab06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -27,9 +27,11 @@ from src.pipelines.pipeline_kandinsky_subject_prior import KandinskyPriorPipelin
27
  from diffusers import DiffusionPipeline
28
  from PIL import Image
29
 
 
 
30
  class Model:
31
  def __init__(self):
32
- self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
33
 
34
  self.text_encoder = (
35
  CLIPTextModelWithProjection.from_pretrained(
@@ -39,7 +41,7 @@ class Model:
39
  )
40
  .eval()
41
  .requires_grad_(False)
42
- ).to("cuda")
43
 
44
  self.tokenizer = CLIPTokenizer.from_pretrained(
45
  "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
@@ -99,7 +101,7 @@ class Model:
99
  plt.savefig('image_testt2.png')
100
  plt.show()
101
 
102
- mask_img = self.image_processor(image, return_tensors="pt").to("cuda")
103
  vision_feats = self.vision_encoder(
104
  **mask_img
105
  ).image_embeds
@@ -111,7 +113,7 @@ class Model:
111
  print(indices)
112
 
113
  if image2 is not None:
114
- mask_img2 = self.image_processor(image2, return_tensors="pt").to("cuda")
115
  vision_feats2 = self.vision_encoder(
116
  **mask_img2
117
  ).image_embeds
@@ -123,9 +125,9 @@ class Model:
123
  print(indices)
124
 
125
  text_feats = {
126
- "prompt_embeds": new_feats.text_embeds.to("cuda"),
127
- "text_encoder_hidden_states": torch.tensor(new_last_hidden_states).unsqueeze(0).to("cuda"),
128
- "text_mask": txt_items["attention_mask"].to("cuda"),
129
  }
130
  return text_feats
131
 
@@ -219,4 +221,4 @@ def create_demo():
219
 
220
  if __name__ == '__main__':
221
  demo = create_demo()
222
- demo.queue(max_size=20).launch()
 
27
  from diffusers import DiffusionPipeline
28
  from PIL import Image
29
 
30
+ __device__ = "cuda" if torch.cuda.is_available() else "cpu"
31
+
32
  class Model:
33
  def __init__(self):
34
+ self.device = __device__
35
 
36
  self.text_encoder = (
37
  CLIPTextModelWithProjection.from_pretrained(
 
41
  )
42
  .eval()
43
  .requires_grad_(False)
44
+ ).to(self.device)
45
 
46
  self.tokenizer = CLIPTokenizer.from_pretrained(
47
  "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
 
101
  plt.savefig('image_testt2.png')
102
  plt.show()
103
 
104
+ mask_img = self.image_processor(image, return_tensors="pt").to(__device__)
105
  vision_feats = self.vision_encoder(
106
  **mask_img
107
  ).image_embeds
 
113
  print(indices)
114
 
115
  if image2 is not None:
116
+ mask_img2 = self.image_processor(image2, return_tensors="pt").to(__device__)
117
  vision_feats2 = self.vision_encoder(
118
  **mask_img2
119
  ).image_embeds
 
125
  print(indices)
126
 
127
  text_feats = {
128
+ "prompt_embeds": new_feats.text_embeds.to(__device__),
129
+ "text_encoder_hidden_states": torch.tensor(new_last_hidden_states).unsqueeze(0).to(__device__),
130
+ "text_mask": txt_items["attention_mask"].to(__device__),
131
  }
132
  return text_feats
133
 
 
221
 
222
  if __name__ == '__main__':
223
  demo = create_demo()
224
+ demo.queue(api_open=False).launch(share=True)